A fuzzy logic-based prediction model for fracture force using low-power fiber laser beam welding

A fuzzy logic-based prediction model for fracture force using low-power fiber laser beam welding Laser beam welding is an advanced technique to join dissimilar materials together. Important laser joining parameters such as laser power, welding speed, and overlapping factor would determine the weld penetration of the joints. In the current study, a single-sided welding of a titanium alloy, Ti6Al4V, and a nickel-based alloy, Inconel 600, in a T-joint configuration was conducted using a continuous-wave, low-power fiber laser. The strengths of the welded joints were evaluated using pull tests. These results were used to build an intelligent fuzzy expert system model to predict the fracture force of the joint. Using MATLAB R2009b, the fuzzy logic development was made based on the Mamdani technique. Twenty-four real-time experiments were carried out and 18 numerical testing data were used to develop the fuzzy logic. The resulting viewer surfaces showed that the overlapping factor was the highest influencing laser welding parameter, followed by the welding speed and the laser power. The calculated relative error between the real and predicted results was 6.95% indicating acceptable results. This was supported by the goodness of fit value of 0.9849. The findings of this study have extended the knowledge of the fracture force prediction using the fuzzy expert system model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A fuzzy logic-based prediction model for fracture force using low-power fiber laser beam welding

Loading next page...
 
/lp/springer_journal/a-fuzzy-logic-based-prediction-model-for-fracture-force-using-low-OBDphbKLGm
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0073-z
Publisher site
See Article on Publisher Site

Abstract

Laser beam welding is an advanced technique to join dissimilar materials together. Important laser joining parameters such as laser power, welding speed, and overlapping factor would determine the weld penetration of the joints. In the current study, a single-sided welding of a titanium alloy, Ti6Al4V, and a nickel-based alloy, Inconel 600, in a T-joint configuration was conducted using a continuous-wave, low-power fiber laser. The strengths of the welded joints were evaluated using pull tests. These results were used to build an intelligent fuzzy expert system model to predict the fracture force of the joint. Using MATLAB R2009b, the fuzzy logic development was made based on the Mamdani technique. Twenty-four real-time experiments were carried out and 18 numerical testing data were used to develop the fuzzy logic. The resulting viewer surfaces showed that the overlapping factor was the highest influencing laser welding parameter, followed by the welding speed and the laser power. The calculated relative error between the real and predicted results was 6.95% indicating acceptable results. This was supported by the goodness of fit value of 0.9849. The findings of this study have extended the knowledge of the fracture force prediction using the fuzzy expert system model.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off