A framework for efficient spatial web object retrieval

A framework for efficient spatial web object retrieval The conventional Internet is acquiring a geospatial dimension. Web documents are being geo-tagged and geo-referenced objects such as points of interest are being associated with descriptive text documents. The resulting fusion of geo-location and documents enables new kinds of queries that take into account both location proximity and text relevancy. This paper proposes a new indexing framework for top- k spatial text retrieval. The framework leverages the inverted file for text retrieval and the R-tree for spatial proximity querying. Several indexing approaches are explored within this framework. The framework encompasses algorithms that utilize the proposed indexes for computing location-aware as well as region-aware top- k text retrieval queries, thus taking into account both text relevancy and spatial proximity to prune the search space. Results of empirical studies with an implementation of the framework demonstrate that the paper’s proposal is capable of excellent performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A framework for efficient spatial web object retrieval

Loading next page...
 
/lp/springer_journal/a-framework-for-efficient-spatial-web-object-retrieval-TIr5gmF3Uj
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0271-0
Publisher site
See Article on Publisher Site

Abstract

The conventional Internet is acquiring a geospatial dimension. Web documents are being geo-tagged and geo-referenced objects such as points of interest are being associated with descriptive text documents. The resulting fusion of geo-location and documents enables new kinds of queries that take into account both location proximity and text relevancy. This paper proposes a new indexing framework for top- k spatial text retrieval. The framework leverages the inverted file for text retrieval and the R-tree for spatial proximity querying. Several indexing approaches are explored within this framework. The framework encompasses algorithms that utilize the proposed indexes for computing location-aware as well as region-aware top- k text retrieval queries, thus taking into account both text relevancy and spatial proximity to prune the search space. Results of empirical studies with an implementation of the framework demonstrate that the paper’s proposal is capable of excellent performance.

Journal

The VLDB JournalSpringer Journals

Published: Dec 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off