A framework for efficient regression tests on database applications

A framework for efficient regression tests on database applications Regression testing is an important software maintenance activity to ensure the integrity of a software after modification. However, most methods and tools developed for software testing today do not work well for database applications; these tools only work well if applications are stateless or tests can be designed in such a way that they do not alter the state. To execute tests for database applications efficiently, the challenge is to control the state of the database during testing and to order the test runs such that expensive database reset operations that bring the database into the right state need to be executed as seldom as possible. This work devises a regression testing framework for database applications so that test runs can be executed in parallel. The goal is to achieve linear speed-up and/or exploit the available resources as well as possible. This problem is challenging because parallel testing needs to consider both load balancing and controlling the state of the database. Experimental results show that test run execution can achieve linear speed-up by using the proposed framework. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A framework for efficient regression tests on database applications

Loading next page...
 
/lp/springer_journal/a-framework-for-efficient-regression-tests-on-database-applications-PfNWWHIi2t
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0028-8
Publisher site
See Article on Publisher Site

Abstract

Regression testing is an important software maintenance activity to ensure the integrity of a software after modification. However, most methods and tools developed for software testing today do not work well for database applications; these tools only work well if applications are stateless or tests can be designed in such a way that they do not alter the state. To execute tests for database applications efficiently, the challenge is to control the state of the database during testing and to order the test runs such that expensive database reset operations that bring the database into the right state need to be executed as seldom as possible. This work devises a regression testing framework for database applications so that test runs can be executed in parallel. The goal is to achieve linear speed-up and/or exploit the available resources as well as possible. This problem is challenging because parallel testing needs to consider both load balancing and controlling the state of the database. Experimental results show that test run execution can achieve linear speed-up by using the proposed framework.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2007

References

  • Parallel database systems: future of high performance database systems
    DeWitt, D.; Gray, J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off