A Framework for Differentiated Survivable Optical Virtual Private Networks

A Framework for Differentiated Survivable Optical Virtual Private Networks Wavelength division multiplexed (WDM) networks are matured to provide, scalable data centric infrastructure, capable of delivering flexible, value added, high speed and high bandwidth services directly from the optical domain. Optical virtual private networks (OVPNs) make use of the concept of highly reconfigurable nature of lightpaths offered by WDM, to create secure tunnels of high bandwidth across the intelligent WDM optical transport network. An OVPN is a private connection between two or more edge devices (access nodes), that allows a group of clients to fully exploit the flexibility of the switched intelligent optical network. However, OVPNs will not be a viable alternative unless they can guarantee a predictable bandwidth, availability, response time, and fault-tolerance to users. In this paper, we study the problem of dynamically establishing lightpaths for OVPNs over intelligent optical transport networks to provide varying classes of service based on the type of primary and backup lightpaths and the number of backup lightpaths, when each OVPN is specified by the desired logical connectivity and Class of Service. The type of primary and backup lightpaths determines the QoS parameters such as response time and bandwidth. Whereas, the number of backup lightpaths determines the level of fault-tolerance and availability of OVPN. Based on the service classes, any OVPN in the network falls into one of the six classes viz. single dedicated primary and single dedicated backup (SDPSDB), single dedicated primary and multiple dedicated backups (SDPMDB), single dedicated primary and single shared backup (SDPSSB), single shared primary and single shared backup (SSPSSB), single shared primary and multiple shared backups (SSPMSB), and best-effort (BE). In BE, we consider two variations—(1) OVPN as dedicated logical ring topology (DLRT) and (2) OVPN as shared logical ring topology (SLRT). We conduct extensive simulation experiments to compare and evaluate the effectiveness of different classes of OVPNs for varying network configurations–varying number of fibers, wavelengths on physical links, and number of nodes in OVPN. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Framework for Differentiated Survivable Optical Virtual Private Networks

Loading next page...
 
/lp/springer_journal/a-framework-for-differentiated-survivable-optical-virtual-private-qdwIhMphsB
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1016040703544
Publisher site
See Article on Publisher Site

Abstract

Wavelength division multiplexed (WDM) networks are matured to provide, scalable data centric infrastructure, capable of delivering flexible, value added, high speed and high bandwidth services directly from the optical domain. Optical virtual private networks (OVPNs) make use of the concept of highly reconfigurable nature of lightpaths offered by WDM, to create secure tunnels of high bandwidth across the intelligent WDM optical transport network. An OVPN is a private connection between two or more edge devices (access nodes), that allows a group of clients to fully exploit the flexibility of the switched intelligent optical network. However, OVPNs will not be a viable alternative unless they can guarantee a predictable bandwidth, availability, response time, and fault-tolerance to users. In this paper, we study the problem of dynamically establishing lightpaths for OVPNs over intelligent optical transport networks to provide varying classes of service based on the type of primary and backup lightpaths and the number of backup lightpaths, when each OVPN is specified by the desired logical connectivity and Class of Service. The type of primary and backup lightpaths determines the QoS parameters such as response time and bandwidth. Whereas, the number of backup lightpaths determines the level of fault-tolerance and availability of OVPN. Based on the service classes, any OVPN in the network falls into one of the six classes viz. single dedicated primary and single dedicated backup (SDPSDB), single dedicated primary and multiple dedicated backups (SDPMDB), single dedicated primary and single shared backup (SDPSSB), single shared primary and single shared backup (SSPSSB), single shared primary and multiple shared backups (SSPMSB), and best-effort (BE). In BE, we consider two variations—(1) OVPN as dedicated logical ring topology (DLRT) and (2) OVPN as shared logical ring topology (SLRT). We conduct extensive simulation experiments to compare and evaluate the effectiveness of different classes of OVPNs for varying network configurations–varying number of fibers, wavelengths on physical links, and number of nodes in OVPN.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 13, 2004

References

  • Efficient rerouting in WDM single-fiber and multi-fiber networks with and without wavelength conversion
    Mohan, G.; Siva Ram Murthy, C.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off