A framework for deterministic delay guarantee in OBS networks

A framework for deterministic delay guarantee in OBS networks In OBS networks, the delay of control packets in the switch control unit (SCU) of core nodes influences burst loss performance in the optical switching and should be constrained. Furthermore, the end-to-end (E2E) delay requirements of premium services need queueing delay guarantee in network nodes throughout the transmission path. For this purpose, a framework for deterministic delay guarantee is proposed in this article. It incorporates the deterministic delay model in the ingress edge node as well as in the SCUs of core nodes. On this basis, the configuration of the assembler and the offset time is addressed by means of an optimization problem under the delay constraints. Scenario studies are carried out with reference to realistic transport network topologies. Compared to statistical delay models in the literature, the deterministic model has advantages in rendering robust absolute delay guarantee for individual FEC flows, which is especially appreciated in the provisioning of premium services. By performance evaluation in comparison with the statistical models, it is shown that the adopted deterministic delay models lead to practical delay bounds in a magnitude that is close to the delay estimations by stochastic analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A framework for deterministic delay guarantee in OBS networks

Loading next page...
 
/lp/springer_journal/a-framework-for-deterministic-delay-guarantee-in-obs-networks-dNKP2wrzmy
Publisher
Springer US
Copyright
Copyright © 2010 by The Author(s)
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0268-9
Publisher site
See Article on Publisher Site

Abstract

In OBS networks, the delay of control packets in the switch control unit (SCU) of core nodes influences burst loss performance in the optical switching and should be constrained. Furthermore, the end-to-end (E2E) delay requirements of premium services need queueing delay guarantee in network nodes throughout the transmission path. For this purpose, a framework for deterministic delay guarantee is proposed in this article. It incorporates the deterministic delay model in the ingress edge node as well as in the SCUs of core nodes. On this basis, the configuration of the assembler and the offset time is addressed by means of an optimization problem under the delay constraints. Scenario studies are carried out with reference to realistic transport network topologies. Compared to statistical delay models in the literature, the deterministic model has advantages in rendering robust absolute delay guarantee for individual FEC flows, which is especially appreciated in the provisioning of premium services. By performance evaluation in comparison with the statistical models, it is shown that the adopted deterministic delay models lead to practical delay bounds in a magnitude that is close to the delay estimations by stochastic analysis.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 11, 2010

References

  • Terabit burst switching
    Turner, J.S.
  • Optimized combination of converter pools and FDL buffers for contention resolution in optical burst switching
    Gauger, C.M.
  • An absolute QoS framework for loss guarantees in optical burst-switched networks
    Phung, M.; Chua, K.; Mohan, G.; Motani, M.; Wong, D.
  • Edge node buffer usage in optical burst switching networks
    Li, H.; Thng, I.L.-J.
  • Deterministic delay guarantee in OBS edge node for premium services
    Hu, G.; Raffaelli, C.; Perin, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off