A framework for detecting and characterizing genetic background-dependent imprinting effects

A framework for detecting and characterizing genetic background-dependent imprinting effects Genomic imprinting, where the effects of alleles depend on their parent-of-origin, can be an important component of the genetic architecture of complex traits. Although there has been a rapidly increasing number of studies of genetic architecture that have examined imprinting effects, none have examined whether imprinting effects depend on genetic background. Such effects are critical for the evolution of genomic imprinting because they allow the imprinting state of a locus to evolve as a function of genetic background. Here we develop a two-locus model of epistasis that includes epistatic interactions involving imprinting effects and apply this model to scan the mouse genome for loci that modulate the imprinting effects of quantitative trait loci (QTL). The inclusion of imprinting leads to nine orthogonal forms of epistasis, five of which do not appear in the usual two-locus decomposition of epistasis. Each form represents a change in the imprinting status of one locus across different classes of genotypes at the other locus. Our genome scan identified two different locus pairs that show complex patterns of epistasis, where the imprinting effect at one locus changes across genetic backgrounds at the other locus. Thus, our model provides a framework for the detection of genetic background-dependent imprinting effects that should provide insights into the background dependence and evolution of genomic imprinting. Our application of the model to a genome scan supports this assertion by identifying pairs of loci that show reciprocal changes in their imprinting status as the background provided by the other locus changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A framework for detecting and characterizing genetic background-dependent imprinting effects

Loading next page...
Copyright © 2009 by Springer Science+Business Media, LLC
Life Sciences; Zoology ; Anatomy ; Cell Biology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial