A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems

A fitness approximation assisted competitive swarm optimizer for large scale expensive... Surrogate assisted meta-heuristic algorithms have received increasing attention over the past years due to the fact that many real-world optimization problems are computationally expensive. However, most existing surrogate assisted meta-heuristic algorithms are designed for small or medium scale problems. In this paper, a fitness approximation assisted competitive swarm optimizer is proposed for optimization of large scale expensive problems. Different from most surrogate assisted evolutionary algorithms that use a computational model for approximating the fitness, we estimate the fitness based on the positional relationship between individuals in the competitive swarm optimizer. Empirical study on seven widely used benchmark problems with 100 and 500 decision variables show that the proposed fitness approximation assisted competitive swarm optimizer is able to achieve competitive performance on a limited computational budget. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Memetic Computing Springer Journals

A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems

Loading next page...
 
/lp/springer_journal/a-fitness-approximation-assisted-competitive-swarm-optimizer-for-large-jD0ud5zouu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Mathematical and Computational Engineering; Artificial Intelligence (incl. Robotics); Complex Systems; Control, Robotics, Mechatronics; Bioinformatics; Applications of Mathematics
ISSN
1865-9284
eISSN
1865-9292
D.O.I.
10.1007/s12293-016-0199-9
Publisher site
See Article on Publisher Site

Abstract

Surrogate assisted meta-heuristic algorithms have received increasing attention over the past years due to the fact that many real-world optimization problems are computationally expensive. However, most existing surrogate assisted meta-heuristic algorithms are designed for small or medium scale problems. In this paper, a fitness approximation assisted competitive swarm optimizer is proposed for optimization of large scale expensive problems. Different from most surrogate assisted evolutionary algorithms that use a computational model for approximating the fitness, we estimate the fitness based on the positional relationship between individuals in the competitive swarm optimizer. Empirical study on seven widely used benchmark problems with 100 and 500 decision variables show that the proposed fitness approximation assisted competitive swarm optimizer is able to achieve competitive performance on a limited computational budget.

Journal

Memetic ComputingSpringer Journals

Published: Jul 7, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off