A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing

A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing RNA2, the short segment of the genome of Dicenthrarchus labrax encephalitis virus (DIEV), a fish nodavirus causing seabass encephalitis, was cloned. Sequence analysis revealed that DIEV RNA2 contains a single open reading frame (ORF), which carries the catalytic D-75 residue but lacks the site for autocatalytic proteolysis, the process yielding the two capsid proteins of insect nodaviruses. Nevertheless, SDS-PAGE analysis of mature virions revealed a 43–45 kDa protein doublet. In order to determine the mechanism of synthesis of the two capsid proteins in DIEV, wild type and mutagenized forms of RNA2 were expressed in cell-free translation extracts and in transfected cells. Results showed that, despite the presence of the catalytic D-75 residue, the DIEV capsid protein doublet did not result from the assembly-dependent autocatalytic cleavage of a protein precursor. Moreover, our data show that, although suggested by sequence analysis, the DIEV capsid protein doublet results from neither an alternative initiation codon usage nor from a −1 ribosomal frameshift. Results of cell-free translation experiments demonstrate that the capsid protein doublet neither results of the proteolytic cleavage of a precursor nor of a degradation process. Kinetics of capsid protein synthesis in cell-free translation programmed with RNA2 revealed, instead, that the two capsid proteins are cosynthesized. Together these data strongly suggest that the DIEV capsid protein doublet results from cotranslational modification(s) of the ORF-encoded protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing

Loading next page...
 
/lp/springer_journal/a-fish-encephalitis-virus-that-differs-from-other-nodaviruses-by-its-EBPTbIgaoK
Publisher
Springer Journals
Copyright
Copyright © Wien by 1997 Springer-Verlag/
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050050248
Publisher site
See Article on Publisher Site

Abstract

RNA2, the short segment of the genome of Dicenthrarchus labrax encephalitis virus (DIEV), a fish nodavirus causing seabass encephalitis, was cloned. Sequence analysis revealed that DIEV RNA2 contains a single open reading frame (ORF), which carries the catalytic D-75 residue but lacks the site for autocatalytic proteolysis, the process yielding the two capsid proteins of insect nodaviruses. Nevertheless, SDS-PAGE analysis of mature virions revealed a 43–45 kDa protein doublet. In order to determine the mechanism of synthesis of the two capsid proteins in DIEV, wild type and mutagenized forms of RNA2 were expressed in cell-free translation extracts and in transfected cells. Results showed that, despite the presence of the catalytic D-75 residue, the DIEV capsid protein doublet did not result from the assembly-dependent autocatalytic cleavage of a protein precursor. Moreover, our data show that, although suggested by sequence analysis, the DIEV capsid protein doublet results from neither an alternative initiation codon usage nor from a −1 ribosomal frameshift. Results of cell-free translation experiments demonstrate that the capsid protein doublet neither results of the proteolytic cleavage of a precursor nor of a degradation process. Kinetics of capsid protein synthesis in cell-free translation programmed with RNA2 revealed, instead, that the two capsid proteins are cosynthesized. Together these data strongly suggest that the DIEV capsid protein doublet results from cotranslational modification(s) of the ORF-encoded protein.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off