A first-generation porcine whole-genome radiation hybrid map

A first-generation porcine whole-genome radiation hybrid map A whole-genome radiation hybrid (WG-RH) panel was used to generate a first-generation radiation map of the porcine (Sus scrofa) genome. Over 900 Type I and II markers were used to amplify the INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH) comprised of 118 hybrid clones. Average marker retention frequency of 29.3% was calculated with 757 scorable markers. The RHMAP program established 128 linkage groups covering each chromosome (n = 19) at a lod ≥ 4.8. Fewer than 10% of the markers (59) could not be placed within any linkage group at a lod score ≥4.8. Linkage group order for each chromosome was determined by incorporating linkage data from the swine genetic map as well as physical assignments. The current map has an estimated ratio of ∼70 kb/cR and a maximum theoretical resolution of 145 kb. This initial map forms a template for establishing accurate YAC and BAC contigs and eventual positional cloning of genes associated with complex traits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals
Loading next page...
 
/lp/springer_journal/a-first-generation-porcine-whole-genome-radiation-hybrid-map-QK3hhcGnbx
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359901097
Publisher site
See Article on Publisher Site

Abstract

A whole-genome radiation hybrid (WG-RH) panel was used to generate a first-generation radiation map of the porcine (Sus scrofa) genome. Over 900 Type I and II markers were used to amplify the INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH) comprised of 118 hybrid clones. Average marker retention frequency of 29.3% was calculated with 757 scorable markers. The RHMAP program established 128 linkage groups covering each chromosome (n = 19) at a lod ≥ 4.8. Fewer than 10% of the markers (59) could not be placed within any linkage group at a lod score ≥4.8. Linkage group order for each chromosome was determined by incorporating linkage data from the swine genetic map as well as physical assignments. The current map has an estimated ratio of ∼70 kb/cR and a maximum theoretical resolution of 145 kb. This initial map forms a template for establishing accurate YAC and BAC contigs and eventual positional cloning of genes associated with complex traits.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off