A fast algorithm for mining high average-utility itemsets

A fast algorithm for mining high average-utility itemsets Mining high-utility itemsets (HUIs) in transactional databases has become a very popular research topic in recent years. A popular variation of the problem of HUI mining is to discover high average-utility itemsets (HAUIs), where an alternative measure called the average-utility is used to evaluate the utility of itemsets by considering their lengths. Albeit, HAUI mining has been studied extensively, current algorithms often consume a large amount of memory and have long execution times, due to the large search space and the usage of loose upper bounds to estimate the average-utilities of itemsets. In this paper, we present a more efficient algorithm for HAUI mining, which includes three pruning strategies to provide a tighter upper bound on the average-utilities of itemsets, and thus reduce the search space more effectively to decrease the runtime. The first pruning strategy utilizes relationships between item pairs to reduce the search space for itemsets containing three or more items. The second pruning strategy provides a tighter upper bound on the average-utilities of itemsets to prune unpromising candidates early. The third strategy reduces the time for constructing the average-utility-list structures for itemsets, which is used to calculate their upper bounds. Substantial experiments conducted on both real-life and synthetic datasets show that the proposed algorithm with three pruning strategies can efficiently and effectively reduce the search space for mining HAUIs, when compared to the state-of-the-art algorithms, in terms of runtime, number of candidates, memory usage, performance of the pruning strategies and scalability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A fast algorithm for mining high average-utility itemsets

Loading next page...
 
/lp/springer_journal/a-fast-algorithm-for-mining-high-average-utility-itemsets-ZXzDiqYPH0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0896-1
Publisher site
See Article on Publisher Site

Abstract

Mining high-utility itemsets (HUIs) in transactional databases has become a very popular research topic in recent years. A popular variation of the problem of HUI mining is to discover high average-utility itemsets (HAUIs), where an alternative measure called the average-utility is used to evaluate the utility of itemsets by considering their lengths. Albeit, HAUI mining has been studied extensively, current algorithms often consume a large amount of memory and have long execution times, due to the large search space and the usage of loose upper bounds to estimate the average-utilities of itemsets. In this paper, we present a more efficient algorithm for HAUI mining, which includes three pruning strategies to provide a tighter upper bound on the average-utilities of itemsets, and thus reduce the search space more effectively to decrease the runtime. The first pruning strategy utilizes relationships between item pairs to reduce the search space for itemsets containing three or more items. The second pruning strategy provides a tighter upper bound on the average-utilities of itemsets to prune unpromising candidates early. The third strategy reduces the time for constructing the average-utility-list structures for itemsets, which is used to calculate their upper bounds. Substantial experiments conducted on both real-life and synthetic datasets show that the proposed algorithm with three pruning strategies can efficiently and effectively reduce the search space for mining HAUIs, when compared to the state-of-the-art algorithms, in terms of runtime, number of candidates, memory usage, performance of the pruning strategies and scalability.

Journal

Applied IntelligenceSpringer Journals

Published: Mar 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off