Access the full text.
Sign up today, get DeepDyve free for 14 days.
In the development of cluster-based energy-efficient protocols for wireless sensor networks (WSNs), a particularly challenging problem is the dynamic organization of sensors into a wireless communication network and the routing of sensed information from the field sensors to a remote base station (BS) in a manner that prolongs the lifetime of WSNs. This paper presents a new energy-efficient clustering protocol for WSNs, which can minimize total network energy dissipation while maximizing network lifetime. The protocol is divided into two parts. The first deals with constructing an infrastructure for the given WSN. A newly developed algorithm, based on a harmony search (HS), automatically determines the optimal number of clusters and allocates sensors into these clusters. This algorithm also eliminates the need to set the number of clusters a priori. The second part is concerned with the process of sending sensed data from nodes to their cluster head and then to the BS. A decentralized fuzzy clustering algorithm is proposed, where the selection of cluster heads in each round is locally made in each cluster during the network lifetime. Simulation results demonstrate that the proposed protocol can achieve an optimal number of clusters, prolong the network lifetime and increase the data delivery at the BS, when compared to other well-known clustering-based routing protocols.
Annals of Telecommunications – Springer Journals
Published: Oct 10, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.