A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed, unsteady flows

A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed,... A digital dual-camera cinematographic particle image velocimetry (CPIV) system has been developed to provide time-resolved, high resolution flow measurements in high-Reynolds number, turbulent flows. Two high-speed CMOS cameras were optically combined to acquire double-pulsed CPIV images at kilohertz frame rates. Bias and random errors due to camera misalignment, camera vibration, and lens aberration were corrected or estimated. Systematic errors due to the camera misalignment were reduced to less than 2 pixels throughout the image plane using mechanical alignment, resulting in 3.1% positional uncertainty of velocity measurements. Frame-to-frame uncertainties caused by mechanical vibration were eliminated with the aid of digital image calibration and frame-to-frame camera registration. This dual-camera CPIV system is capable of resolving high speed, unsteady flows with high temporal and spatial resolutions. It also allows time intervals between the two exposures down to 4 μs, enabling the measurements of speed flows 5–10 times higher than possible with frame-straddling using similar cameras. A turbulent shallow cavity was then chosen as the experimental object investigated by this dual-camera CPIV technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed, unsteady flows

Loading next page...
 
/lp/springer_journal/a-dual-camera-cinematographic-piv-measurement-system-at-kilohertz-rEf062RC30
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0753-z
Publisher site
See Article on Publisher Site

Abstract

A digital dual-camera cinematographic particle image velocimetry (CPIV) system has been developed to provide time-resolved, high resolution flow measurements in high-Reynolds number, turbulent flows. Two high-speed CMOS cameras were optically combined to acquire double-pulsed CPIV images at kilohertz frame rates. Bias and random errors due to camera misalignment, camera vibration, and lens aberration were corrected or estimated. Systematic errors due to the camera misalignment were reduced to less than 2 pixels throughout the image plane using mechanical alignment, resulting in 3.1% positional uncertainty of velocity measurements. Frame-to-frame uncertainties caused by mechanical vibration were eliminated with the aid of digital image calibration and frame-to-frame camera registration. This dual-camera CPIV system is capable of resolving high speed, unsteady flows with high temporal and spatial resolutions. It also allows time intervals between the two exposures down to 4 μs, enabling the measurements of speed flows 5–10 times higher than possible with frame-straddling using similar cameras. A turbulent shallow cavity was then chosen as the experimental object investigated by this dual-camera CPIV technique.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 8, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off