A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants

A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class... We have isolated and characterized a gene, His1-3, encoding a structurally divergent linker histone in Arabidopsis thaliana. Southern and northern hybridization data indicate that A. thaliana expresses three single-copy linker histone genes, each encoding a structurally distinct variant. H1-3 is a considerably smaller protein (167 amino acids with a mass of 19.0 kDa) than any other described linker histone from higher eukaryotes. We examined the expression of His1-3 at the RNA and protein levels and found that it is induced specifically by water stress. In contrast, expression of His1-1, His1-2 and His4 appear unaffected by water stress. Furthermore, the primary structure of the protein possesses distinct characteristics that are shared with another drought-inducible linker histone, H1-D, isolated from Lycopersicon pennellii. Based on structural characteristics of the deduced protein and its inducible expression, we hypothesize that H1-3 and H1-D are linker histone variants that have specialized roles in the structure and function of plant chromatin and therefore they can be considered to be members of a unique subclass of plant histones. Immunoblotting with an antibody produced against a short polypeptide in the conserved domain of this subtype indicates that similar proteins may exist in other plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants

Loading next page...
 
/lp/springer_journal/a-drought-stress-inducible-histone-gene-in-arabidopsis-thaliana-is-a-y2yTWyFbRU
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005886011722
Publisher site
See Article on Publisher Site

Abstract

We have isolated and characterized a gene, His1-3, encoding a structurally divergent linker histone in Arabidopsis thaliana. Southern and northern hybridization data indicate that A. thaliana expresses three single-copy linker histone genes, each encoding a structurally distinct variant. H1-3 is a considerably smaller protein (167 amino acids with a mass of 19.0 kDa) than any other described linker histone from higher eukaryotes. We examined the expression of His1-3 at the RNA and protein levels and found that it is induced specifically by water stress. In contrast, expression of His1-1, His1-2 and His4 appear unaffected by water stress. Furthermore, the primary structure of the protein possesses distinct characteristics that are shared with another drought-inducible linker histone, H1-D, isolated from Lycopersicon pennellii. Based on structural characteristics of the deduced protein and its inducible expression, we hypothesize that H1-3 and H1-D are linker histone variants that have specialized roles in the structure and function of plant chromatin and therefore they can be considered to be members of a unique subclass of plant histones. Immunoblotting with an antibody produced against a short polypeptide in the conserved domain of this subtype indicates that similar proteins may exist in other plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off