A doubly sparse approach for group variable selection

A doubly sparse approach for group variable selection We propose a new penalty called the doubly sparse (DS) penalty for variable selection in high-dimensional linear regression models when the covariates are naturally grouped. An advantage of the DS penalty over other penalties is that it provides a clear way of controlling sparsity between and within groups, separately. We prove that there exists a unique global minimizer of the DS penalized sum of squares of residuals and show how the DS penalty selects groups and variables within selected groups, even when the number of groups exceeds the sample size. An efficient optimization algorithm is introduced also. Results from simulation studies and real data analysis show that the DS penalty outperforms other existing penalties with finite samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of the Institute of Statistical Mathematics Springer Journals

A doubly sparse approach for group variable selection

Loading next page...
 
/lp/springer_journal/a-doubly-sparse-approach-for-group-variable-selection-ZXtycYorFM
Publisher
Springer Japan
Copyright
Copyright © 2016 by The Institute of Statistical Mathematics, Tokyo
Subject
Statistics; Statistics, general; Statistics for Business/Economics/Mathematical Finance/Insurance
ISSN
0020-3157
eISSN
1572-9052
D.O.I.
10.1007/s10463-016-0571-z
Publisher site
See Article on Publisher Site

Abstract

We propose a new penalty called the doubly sparse (DS) penalty for variable selection in high-dimensional linear regression models when the covariates are naturally grouped. An advantage of the DS penalty over other penalties is that it provides a clear way of controlling sparsity between and within groups, separately. We prove that there exists a unique global minimizer of the DS penalized sum of squares of residuals and show how the DS penalty selects groups and variables within selected groups, even when the number of groups exceeds the sample size. An efficient optimization algorithm is introduced also. Results from simulation studies and real data analysis show that the DS penalty outperforms other existing penalties with finite samples.

Journal

Annals of the Institute of Statistical MathematicsSpringer Journals

Published: Jun 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off