A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia

A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia A tospovirus causing necrotic streaks on leaves was isolated from Alstroemeria sp. in Colombia. Infected samples reacted positively with tomato spotted wilt virus (TSWV) antiserum during preliminary serological tests. Further analysis revealed a close serological relationship to tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV). A major part of the S-RNA segment, encompassing the nucleocapsid (N) protein gene, the 5′ untranslated region and a part of the intergenic region 3′ of the N gene, was cloned and sequenced. The deduced N protein sequence showed highest amino acid identity (82%) to that of TCSV, indicating that the virus represents a new tospovirus species, for which the name Alstroemeria necrotic streak virus (ANSV) is coined. Phylogenetic analysis based on the N protein sequence revealed that this Alstroemeria-infecting tospovirus clustered with tospoviruses from the American continent. Frankliniella occidentalis was identified as potential vector species for ANSV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia

Loading next page...
 
/lp/springer_journal/a-distinct-tospovirus-causing-necrotic-streak-on-alstroemeria-sp-in-8FbaU4vl0f
Publisher
Springer Vienna
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0590-7
Publisher site
See Article on Publisher Site

Abstract

A tospovirus causing necrotic streaks on leaves was isolated from Alstroemeria sp. in Colombia. Infected samples reacted positively with tomato spotted wilt virus (TSWV) antiserum during preliminary serological tests. Further analysis revealed a close serological relationship to tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV). A major part of the S-RNA segment, encompassing the nucleocapsid (N) protein gene, the 5′ untranslated region and a part of the intergenic region 3′ of the N gene, was cloned and sequenced. The deduced N protein sequence showed highest amino acid identity (82%) to that of TCSV, indicating that the virus represents a new tospovirus species, for which the name Alstroemeria necrotic streak virus (ANSV) is coined. Phylogenetic analysis based on the N protein sequence revealed that this Alstroemeria-infecting tospovirus clustered with tospoviruses from the American continent. Frankliniella occidentalis was identified as potential vector species for ANSV.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off