A displacement-shifted vision-based hybrid particle tracking velocimetry (PTV) technique

A displacement-shifted vision-based hybrid particle tracking velocimetry (PTV) technique A displacement-shifted approach is introduced to the vision-based particle tracking velocimetry (VB-PTV) technique described in Lei et al. (Exp Fluids 53(5):1251–1268, 2012), using translational and angular displacements. The particle matching algorithm in VB-PTV is based on a proximity matrix, G ij , which favors short distance particle matches over long distance matches. By modifying the formula used in constructing G ij , particles that lie at the expected location of the match are favored. Two displacement-shifted methods are introduced: the first of which relies on particle image velocimetry estimates of particle displacements and the second of which relies on both the expected displacement and direction of the correct match to construct the proximity matrix. These displacement-shifted algorithms improve performance in high gradient (0.3 px/px and above), high displacement flows (upwards of 20 pixels), broadening the range of flows for which VB-PTV can be used. RMS errors in PTV results are reduced by 33 % or more when these displacement-shifted algorithms are made to the VB-PTV algorithm which is used to process Oseen vortex images. Experimental images of shear layer and the wake region of vortex shedding were used to verify the performances of the proposed methods, and the results are in agreement with the synthetic tests. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A displacement-shifted vision-based hybrid particle tracking velocimetry (PTV) technique

Loading next page...
 
/lp/springer_journal/a-displacement-shifted-vision-based-hybrid-particle-tracking-yYd4BkFqZp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1676-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial