A discussion on the significance associated with Pearson’s correlation in precision agriculture studies

A discussion on the significance associated with Pearson’s correlation in precision agriculture... Pearson’s correlation is a commonly used descriptive statistic in many published precision agriculture studies, not only in the Precision Agriculture Journal, but also in other journals that publish in this domain. Very few of these articles take into consideration auto-correlation in data when performing correlation analysis, despite a statistical solution being available. A brief discussion on the need to consider auto-correlation and the effective sample size when using Pearson’s correlation in precision agriculture research is presented. The discussion is supported by an example using spatial data on vine size and canopy vigour in a juice-grape vineyard. The example data demonstrated that the p-value of the correlation between vine size and canopy vigour increased when auto-correlation was accounted for, potentially to a non-significant level depending on the desired α-level. The example data also demonstrated that the method by which data are processed (interpolated) to achieve co-located data will also affect the amount of auto-correlation and the effective sample size. The results showed that for the same variables, with different approaches to data co-location, a lower r-value may have a lower p-value and potentially hold more statistical significance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A discussion on the significance associated with Pearson’s correlation in precision agriculture studies

Loading next page...
 
/lp/springer_journal/a-discussion-on-the-significance-associated-with-pearson-s-correlation-bkEccQrh5D
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-013-9314-9
Publisher site
See Article on Publisher Site

Abstract

Pearson’s correlation is a commonly used descriptive statistic in many published precision agriculture studies, not only in the Precision Agriculture Journal, but also in other journals that publish in this domain. Very few of these articles take into consideration auto-correlation in data when performing correlation analysis, despite a statistical solution being available. A brief discussion on the need to consider auto-correlation and the effective sample size when using Pearson’s correlation in precision agriculture research is presented. The discussion is supported by an example using spatial data on vine size and canopy vigour in a juice-grape vineyard. The example data demonstrated that the p-value of the correlation between vine size and canopy vigour increased when auto-correlation was accounted for, potentially to a non-significant level depending on the desired α-level. The example data also demonstrated that the method by which data are processed (interpolated) to achieve co-located data will also affect the amount of auto-correlation and the effective sample size. The results showed that for the same variables, with different approaches to data co-location, a lower r-value may have a lower p-value and potentially hold more statistical significance.

Journal

Precision AgricultureSpringer Journals

Published: Apr 23, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off