A discrete probability model of information support during early embryonic development

A discrete probability model of information support during early embryonic development A percolation model of the diffuse redistribution of morphogenetic information in early regulative development is analyzed. It is demonstrated that the statistical average values of cell connectedness remaining below the percolation threshold of the spatial redistribution of developmental determinants do not provide for the formation of cell structures of the necessary size. The average number of cell interactions should exceed the percolation threshold, and, therefore, the carriers of morphogenetic information in early development can move over distances comparable with the size of the entire embryo. The assumption concerning the percolation mechanism of cell death is used as a basis for estimating the statistical average value of cell connectedness at which the predicted number of cells theoretically isolated from the flow of signal molecules corresponds to the observed frequencies of dying embryonic cells. The estimated average number of cell interactions significantly exceeds the threshold of information resource percolation in the embryonic space and agrees with estimations of other authors, based on direct observations. The probable role of the diffusion front, or percolation cluster shell, in the regionalization of embryonic structures differing in their prospective values is discussed. It is shown that the duration of the communicative period, along with the statistical average number of channels providing for the intercellular transfer of signal molecules by diffusion, is a parameter controlling the processes of determination of embryonic structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

A discrete probability model of information support during early embryonic development

Loading next page...
 
/lp/springer_journal/a-discrete-probability-model-of-information-support-during-early-CaUl3IAWZA
Publisher
Springer Journals
Copyright
Copyright © 2000 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1007/BF02758912
Publisher site
See Article on Publisher Site

Abstract

A percolation model of the diffuse redistribution of morphogenetic information in early regulative development is analyzed. It is demonstrated that the statistical average values of cell connectedness remaining below the percolation threshold of the spatial redistribution of developmental determinants do not provide for the formation of cell structures of the necessary size. The average number of cell interactions should exceed the percolation threshold, and, therefore, the carriers of morphogenetic information in early development can move over distances comparable with the size of the entire embryo. The assumption concerning the percolation mechanism of cell death is used as a basis for estimating the statistical average value of cell connectedness at which the predicted number of cells theoretically isolated from the flow of signal molecules corresponds to the observed frequencies of dying embryonic cells. The estimated average number of cell interactions significantly exceeds the threshold of information resource percolation in the embryonic space and agrees with estimations of other authors, based on direct observations. The probable role of the diffusion front, or percolation cluster shell, in the regionalization of embryonic structures differing in their prospective values is discussed. It is shown that the duration of the communicative period, along with the statistical average number of channels providing for the intercellular transfer of signal molecules by diffusion, is a parameter controlling the processes of determination of embryonic structures.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Nov 18, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off