A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence

A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in... Based on the need to characterise the accuracy of hot-wire anemometry (HWA) in high Reynolds number wall-bounded turbulence, we here propose a novel direct method for testing the frequency response of various systems to very high frequency velocity fluctuations (up to 50 kHz). A fully developed turbulent pipe flow is exploited to provide the input velocity perturbations. Utilising the unique capabilities of the Princeton Superpipe, it is possible to explore a variety of turbulent pipe flows at matched Reynolds numbers, but with turbulent energy in different frequency ranges. Assuming Reynolds number similarity, any differences between the appropriately scaled energy spectra for these flows should be indicative of measurement error. Having established the accuracy of this testing procedure, the response of several anemometer and probe combinations is tested. While these tests do not provide a direct or definitive comparison between different anemometers (owing to non-optimal tuning in each case), they do provide useful examples of potential frequency responses that could be encountered in HWA experiments. These results are subsequently used to predict error arising from HWA response for measurements in wall-bounded turbulent flows. For current technology, based on the results obtained here, the frequency response of under- or over-damped HWA systems can only be considered approximately flat up to 5–7 kHz. For flows with substantial turbulent energy in frequencies above this range, errors in measured turbulence quantities due to temporal resolution are increasingly likely. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence

Loading next page...
 
/lp/springer_journal/a-direct-measure-of-the-frequency-response-of-hot-wire-anemometers-ThyJU5ap20
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1856-8
Publisher site
See Article on Publisher Site

Abstract

Based on the need to characterise the accuracy of hot-wire anemometry (HWA) in high Reynolds number wall-bounded turbulence, we here propose a novel direct method for testing the frequency response of various systems to very high frequency velocity fluctuations (up to 50 kHz). A fully developed turbulent pipe flow is exploited to provide the input velocity perturbations. Utilising the unique capabilities of the Princeton Superpipe, it is possible to explore a variety of turbulent pipe flows at matched Reynolds numbers, but with turbulent energy in different frequency ranges. Assuming Reynolds number similarity, any differences between the appropriately scaled energy spectra for these flows should be indicative of measurement error. Having established the accuracy of this testing procedure, the response of several anemometer and probe combinations is tested. While these tests do not provide a direct or definitive comparison between different anemometers (owing to non-optimal tuning in each case), they do provide useful examples of potential frequency responses that could be encountered in HWA experiments. These results are subsequently used to predict error arising from HWA response for measurements in wall-bounded turbulent flows. For current technology, based on the results obtained here, the frequency response of under- or over-damped HWA systems can only be considered approximately flat up to 5–7 kHz. For flows with substantial turbulent energy in frequencies above this range, errors in measured turbulence quantities due to temporal resolution are increasingly likely.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 13, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off