A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.)

A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber... Cucumber (Cucumis sativus) is a monoecious plant that serves as a model for the study of floral sex determination. The genetic background, hormonal and environmental factors regulating unisexual flower development are well characterized, however, the molecular mechanisms are less well understood. To isolate genes involved in male and female flower development we conducted a differential cDNA-Amplified Fragment Length Polymorphism analysis using plant growth apices of predominantly male (monoecious) and female (gynoecious) near isogenic cucumber lines. The plant apices of monoecious cucumbers carry bisexual and unisexual male floral buds while gynoecious ones carry bisexual and unisexual female floral buds. We isolated a cDNA fragment that encodes a putative GTP binding tyrosine phosphorylated protein A (CsTypA1) that is developmentally regulated. CsTypA1 is expressed in stamen primordia and its transcript is more abundant in monoecious plant apices implying a role for CsTypA1 in the early stages of male reproductive organ development. At later stages of flower development a higher transcript level is observed in female flowers in stigmatic papilla, nectary and in particular ovule/ovary tissue. The differential expression of CsTypA1 during male and female flower development indicates a role for CsTypA1 in female flower development, in particular that of the ovary/ovule. Thus, CsTypA1 might have a dual role, one in the early stages of flower development, possibly during sex determination, and the other in the development of the ovary/ovule. This is the first report of a gene encoding a putative TypA in the plant kingdom that is differentially expressed during plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.)

Loading next page...
 
/lp/springer_journal/a-developmentally-regulated-gtp-binding-tyrosine-phosphorylated-hp6TntFd43
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9246-8
Publisher site
See Article on Publisher Site

Abstract

Cucumber (Cucumis sativus) is a monoecious plant that serves as a model for the study of floral sex determination. The genetic background, hormonal and environmental factors regulating unisexual flower development are well characterized, however, the molecular mechanisms are less well understood. To isolate genes involved in male and female flower development we conducted a differential cDNA-Amplified Fragment Length Polymorphism analysis using plant growth apices of predominantly male (monoecious) and female (gynoecious) near isogenic cucumber lines. The plant apices of monoecious cucumbers carry bisexual and unisexual male floral buds while gynoecious ones carry bisexual and unisexual female floral buds. We isolated a cDNA fragment that encodes a putative GTP binding tyrosine phosphorylated protein A (CsTypA1) that is developmentally regulated. CsTypA1 is expressed in stamen primordia and its transcript is more abundant in monoecious plant apices implying a role for CsTypA1 in the early stages of male reproductive organ development. At later stages of flower development a higher transcript level is observed in female flowers in stigmatic papilla, nectary and in particular ovule/ovary tissue. The differential expression of CsTypA1 during male and female flower development indicates a role for CsTypA1 in female flower development, in particular that of the ovary/ovule. Thus, CsTypA1 might have a dual role, one in the early stages of flower development, possibly during sex determination, and the other in the development of the ovary/ovule. This is the first report of a gene encoding a putative TypA in the plant kingdom that is differentially expressed during plant development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off