A detailed study of ray tracing performance: render time and energy cost

A detailed study of ray tracing performance: render time and energy cost Optimizations for ray tracing have typically focused on decreasing the time taken to render each frame. However, in modern computer systems it may actually be more important to minimize the energy used, or some combination of energy and render time. Understanding the time and energy costs per ray can enable the user to make conscious trade-offs between image quality and time/energy budget in a complete system. To facilitate this, in this paper we present a detailed study of per-ray time and energy costs for ray tracing. Specifically, we use path tracing, broken down into distinct kernels, to carry out an extensive study of the fine-grained contributions in time and energy for each ray over multiple bounces. As expected, we have observed that both the time and energy costs are highly correlated with data movement. Especially in large scenes that do not mostly fit in on-chip caches, accesses to DRAM not only account for the majority of the energy use, but also the corresponding stalls dominate the render time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

A detailed study of ray tracing performance: render time and energy cost

Loading next page...
 
/lp/springer_journal/a-detailed-study-of-ray-tracing-performance-render-time-and-energy-peFgq9XHti
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
D.O.I.
10.1007/s00371-018-1532-8
Publisher site
See Article on Publisher Site

Abstract

Optimizations for ray tracing have typically focused on decreasing the time taken to render each frame. However, in modern computer systems it may actually be more important to minimize the energy used, or some combination of energy and render time. Understanding the time and energy costs per ray can enable the user to make conscious trade-offs between image quality and time/energy budget in a complete system. To facilitate this, in this paper we present a detailed study of per-ray time and energy costs for ray tracing. Specifically, we use path tracing, broken down into distinct kernels, to carry out an extensive study of the fine-grained contributions in time and energy for each ray over multiple bounces. As expected, we have observed that both the time and energy costs are highly correlated with data movement. Especially in large scenes that do not mostly fit in on-chip caches, accesses to DRAM not only account for the majority of the energy use, but also the corresponding stalls dominate the render time.

Journal

The Visual ComputerSpringer Journals

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off