A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide

A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon... This work reports detailed investigations for the preparation of nanostructured titania powders by a solvent-free sol–gel-derived process, operated in supercritical CO2 (SC-CO2) at high pressures (10–30 MPa) and large range of temperatures (373–823 K). Depending on the processing temperature, the reaction between Ti(OiPr)4 and water performed in a single supercritical phase led to the formation of either amorphous (Ti(OH)4—titanium hydroxide) or crystalline (TiO2—titanium dioxide) nanostructured particles. Crystalline (anatase) mesoporous powders with high specific surface area were obtained directly in CO2 solvent under supercritical conditions at temperatures as low as 523 K. The effect of hydrodynamic key process parameters such as stirring and water injection rate on both powder morphology and aggregation degree was also investigated in details. The optimized TiO2 anatase powders exhibited attractive photocatalytic activity, with high potential for the degradation of water pollutants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

A detailed insight into the preparation of nanocrystalline TiO2 powders in supercritical carbon dioxide

Loading next page...
 
/lp/springer_journal/a-detailed-insight-into-the-preparation-of-nanocrystalline-tio2-P7z0ECWkW6
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1398-6
Publisher site
See Article on Publisher Site

Abstract

This work reports detailed investigations for the preparation of nanostructured titania powders by a solvent-free sol–gel-derived process, operated in supercritical CO2 (SC-CO2) at high pressures (10–30 MPa) and large range of temperatures (373–823 K). Depending on the processing temperature, the reaction between Ti(OiPr)4 and water performed in a single supercritical phase led to the formation of either amorphous (Ti(OH)4—titanium hydroxide) or crystalline (TiO2—titanium dioxide) nanostructured particles. Crystalline (anatase) mesoporous powders with high specific surface area were obtained directly in CO2 solvent under supercritical conditions at temperatures as low as 523 K. The effect of hydrodynamic key process parameters such as stirring and water injection rate on both powder morphology and aggregation degree was also investigated in details. The optimized TiO2 anatase powders exhibited attractive photocatalytic activity, with high potential for the degradation of water pollutants.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jul 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off