A density functional theory study of the oxidation of methanol to formaldehyde over vanadia supported on silica, titania and zirconia

A density functional theory study of the oxidation of methanol to formaldehyde over vanadia... The mechanism of the selective oxidation of methanol to formaldehyde over vanadia supported on silica, titania and zirconia, suggested recently by Khaliullin and Bell, has been critically reconsidered at the same density functional theory (B3LYP/6-31G*) level. It was shown that an improper use of cluster models mimicking an intrinsic support structure may result in the failure to explain the observed experimental findings like those found in the above paper, i.e. when considering the activation energies and TOF between those three different supports, as well as the next-nearestneighbor V environment geometry for vanadia supported on titania catalyst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A density functional theory study of the oxidation of methanol to formaldehyde over vanadia supported on silica, titania and zirconia

Loading next page...
 
/lp/springer_journal/a-density-functional-theory-study-of-the-oxidation-of-methanol-to-ruhastf0uT
Publisher
Springer Journals
Copyright
Copyright © 2004 by VSP 2004
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856704322798115
Publisher site
See Article on Publisher Site

Abstract

The mechanism of the selective oxidation of methanol to formaldehyde over vanadia supported on silica, titania and zirconia, suggested recently by Khaliullin and Bell, has been critically reconsidered at the same density functional theory (B3LYP/6-31G*) level. It was shown that an improper use of cluster models mimicking an intrinsic support structure may result in the failure to explain the observed experimental findings like those found in the above paper, i.e. when considering the activation energies and TOF between those three different supports, as well as the next-nearestneighbor V environment geometry for vanadia supported on titania catalyst.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 20, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off