A Demand-Based Structure for the Architecture of Wireless Networks on Chip

A Demand-Based Structure for the Architecture of Wireless Networks on Chip Wireless networks on chip (WiNoC) are considered to be a novel approach for designing efficient and scalable systems. The rationale behind this new approach is to reduce power consumption and latency in traditional network-on-chip architecture. Indeed, wireless links (WLs) in WiNoC architecture are shortcuts for the fast data transmission between distant cores. However, the presence of wireless equipment in WiNoC architecture leads to an increase in cost and area. In this paper, with respect to the facility location problem, the researchers attempted to optimally allocate wireless routers (WRs) to the processing elements. The methods of simulated annealing (SA), binary genetic algorithm (BGA) and binary particle swarm optimization (BPSO) were used for optimization under different traffic patterns. The results obtained from the simulations of this study indicate that BGA has higher efficiency than SA and BPSO. Furthermore, the resulting structure has fewer WRs, WLs and relatively desirable performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

A Demand-Based Structure for the Architecture of Wireless Networks on Chip

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial