A defensin from tomato with dual function in defense and development

A defensin from tomato with dual function in defense and development Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A defensin from tomato with dual function in defense and development

Loading next page...
 
/lp/springer_journal/a-defensin-from-tomato-with-dual-function-in-defense-and-development-I05Fe7ouD2
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9512-z
Publisher site
See Article on Publisher Site

Abstract

Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 16, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off