A decision tree using ID3 algorithm for English semantic analysis

A decision tree using ID3 algorithm for English semantic analysis Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

A decision tree using ID3 algorithm for English semantic analysis

Loading next page...
 
/lp/springer_journal/a-decision-tree-using-id3-algorithm-for-english-semantic-analysis-c0ad3c3rvm
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9429-x
Publisher site
See Article on Publisher Site

Abstract

Natural language processing has been studied for many years, and it has been applied to many researches and commercial applications. A new model is proposed in this paper, and is used in the English document-level emotional classification. In this survey, we proposed a new model by using an ID3 algorithm of a decision tree to classify semantics (positive, negative, and neutral) for the English documents. The semantic classification of our model is based on many rules which are generated by applying the ID3 algorithm to 115,000 English sentences of our English training data set. We test our new model on the English testing data set including 25,000 English documents, and achieve 63.6% accuracy of sentiment classification results.

Journal

International Journal of Speech TechnologySpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off