A data mining algorithm for fuzzy transaction data

A data mining algorithm for fuzzy transaction data The main purpose of this paper is to propose a data mining algorithm for finding interesting association rules from given sets of fuzzy transaction data. To efficiently resolve the ambiguity frequently arising in available information and do more justice to the essential fuzziness in human judgment and preference, the trapezoidal fuzzy numbers are used to describe the fuzzy assessments of transaction data. Then, combining the concepts of fuzzy set theory and the priori algorithms, the interesting item sets are found to construct the association rules. Finally, a numerical example is used to demonstrate the computational process of proposed data mining algorithm. By utilizing this data mining algorithm, the decision-makers’ fuzzy assessments with various rating attitudes can be taken into account in the data mining process to assure more convincing and accurate knowledge discovery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

A data mining algorithm for fuzzy transaction data

Loading next page...
 
/lp/springer_journal/a-data-mining-algorithm-for-fuzzy-transaction-data-VoDIEa1dBe
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-013-9934-1
Publisher site
See Article on Publisher Site

Abstract

The main purpose of this paper is to propose a data mining algorithm for finding interesting association rules from given sets of fuzzy transaction data. To efficiently resolve the ambiguity frequently arising in available information and do more justice to the essential fuzziness in human judgment and preference, the trapezoidal fuzzy numbers are used to describe the fuzzy assessments of transaction data. Then, combining the concepts of fuzzy set theory and the priori algorithms, the interesting item sets are found to construct the association rules. Finally, a numerical example is used to demonstrate the computational process of proposed data mining algorithm. By utilizing this data mining algorithm, the decision-makers’ fuzzy assessments with various rating attitudes can be taken into account in the data mining process to assure more convincing and accurate knowledge discovery.

Journal

Quality & QuantitySpringer Journals

Published: Sep 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off