A coupled integral–differential quadrature and B-spline-based multi-step technique for transient analysis of VSCL plates

A coupled integral–differential quadrature and B-spline-based multi-step technique for... Based on the three-dimensional theory of elasticity, the transient response of variable stiffness composite laminated (VSCL) plates with curvilinear fibers subjected to time-dependent concentrated load on elastic foundation is investigated. The fiber orientation angle varies linearly with respect to the in-plane coordinate in each layer. The layerwise theory in conjunction with a mixed integral–differential quadrature method is used to discretize the equations of motion and relevant boundary conditions in the spatial domain with arbitrary boundary conditions. Then, a novel multi-step method based on B-spline curves is presented to obtain a solution for the resulting system of ordinary differential equations in the temporal domain. Simplicity, accuracy and reliability of the novel combined I-DQ approach and in particular the multi-step techniques with respect to the Newmark time integration scheme are demonstrated. By performed comparison studies with available solutions in the open literature, the convergence and accuracy of the presented technique are demonstrated. Finally, the effects of fiber orientation, different geometric parameters, boundary conditions and elastic foundation coefficients on the transient behavior of the VSCL plates are parametrically studied. It is expected that the presented multi-step technique is to be used in a variety of science and engineering problems in future studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Springer Journals

A coupled integral–differential quadrature and B-spline-based multi-step technique for transient analysis of VSCL plates

Loading next page...
 
/lp/springer_journal/a-coupled-integral-differential-quadrature-and-b-spline-based-multi-B3AqEJNWnz
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Continuum Mechanics and Mechanics of Materials; Structural Mechanics; Vibration, Dynamical Systems, Control; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0001-5970
eISSN
1619-6937
D.O.I.
10.1007/s00707-017-1850-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial