A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet

A cost-effective canopy temperature measurement system for precision agriculture: a case study on... Increasing agricultural efficiency in a sustainable manner will contribute to feed a growing population under limited land, nutrient and water resources. Water scarcity and the increasing social concern for this resource are already requiring more sophisticated irrigation and decision-support systems. To address the heterogeneity in crop water status in a commercial field, precision irrigation requires accurate information about crops (e.g., crop water status), soil (e.g., moisture content) and weather (e.g., wind speed and vapor pressure deficit). Numerous studies have shown that plant canopy temperature can be used to derive reliable plant water stress indicators, thus making it a promising tool for irrigation water management. However, efficient and cost-effective measurement techniques are still lacking. This paper assesses the potential of infrared thermometry and thermal imaging for monitoring plant water stress in a commercial sugar beet field by comparing canopy temperature data acquired from a conventional thermal camera with an inexpensive infrared sensor, both mounted on a rotary-wing unmanned aerial vehicle (UAV). Measurements were taken at various phenological stages of the sugar beet growing season. Laboratory tests were performed to determine the key features for accurate temperature measurements and flight altitude. Experiments were conducted in 2014 and 2015 in experimental and commercial sugar beet fields in Southwestern Spain to (i) develop an affordable infrared temperature system suitable for mounting on a UAV to obtain thermal information, (ii) compare sugar beet canopy temperature measurements collected with the low-cost platform with those obtained from a conventional thermal camera, both mounted on a rotary-wing UAV, (iii) identify the factors that will limit the use of the low-cost system to derive temperature-based water stress indices. To accomplish these objectives, well-watered and deficit irrigated plots were established. Results indicated that the lightweight canopy temperature system was robust and reliable, although there were some constraints related to weather conditions and delimitation of the area covered by the infrared sensor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet

Loading next page...
 
/lp/springer_journal/a-cost-effective-canopy-temperature-measurement-system-for-precision-IXUXDFToc7
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9470-9
Publisher site
See Article on Publisher Site

Abstract

Increasing agricultural efficiency in a sustainable manner will contribute to feed a growing population under limited land, nutrient and water resources. Water scarcity and the increasing social concern for this resource are already requiring more sophisticated irrigation and decision-support systems. To address the heterogeneity in crop water status in a commercial field, precision irrigation requires accurate information about crops (e.g., crop water status), soil (e.g., moisture content) and weather (e.g., wind speed and vapor pressure deficit). Numerous studies have shown that plant canopy temperature can be used to derive reliable plant water stress indicators, thus making it a promising tool for irrigation water management. However, efficient and cost-effective measurement techniques are still lacking. This paper assesses the potential of infrared thermometry and thermal imaging for monitoring plant water stress in a commercial sugar beet field by comparing canopy temperature data acquired from a conventional thermal camera with an inexpensive infrared sensor, both mounted on a rotary-wing unmanned aerial vehicle (UAV). Measurements were taken at various phenological stages of the sugar beet growing season. Laboratory tests were performed to determine the key features for accurate temperature measurements and flight altitude. Experiments were conducted in 2014 and 2015 in experimental and commercial sugar beet fields in Southwestern Spain to (i) develop an affordable infrared temperature system suitable for mounting on a UAV to obtain thermal information, (ii) compare sugar beet canopy temperature measurements collected with the low-cost platform with those obtained from a conventional thermal camera, both mounted on a rotary-wing UAV, (iii) identify the factors that will limit the use of the low-cost system to derive temperature-based water stress indices. To accomplish these objectives, well-watered and deficit irrigated plots were established. Results indicated that the lightweight canopy temperature system was robust and reliable, although there were some constraints related to weather conditions and delimitation of the area covered by the infrared sensor.

Journal

Precision AgricultureSpringer Journals

Published: Aug 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off