A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet

A cost-effective canopy temperature measurement system for precision agriculture: a case study on... Increasing agricultural efficiency in a sustainable manner will contribute to feed a growing population under limited land, nutrient and water resources. Water scarcity and the increasing social concern for this resource are already requiring more sophisticated irrigation and decision-support systems. To address the heterogeneity in crop water status in a commercial field, precision irrigation requires accurate information about crops (e.g., crop water status), soil (e.g., moisture content) and weather (e.g., wind speed and vapor pressure deficit). Numerous studies have shown that plant canopy temperature can be used to derive reliable plant water stress indicators, thus making it a promising tool for irrigation water management. However, efficient and cost-effective measurement techniques are still lacking. This paper assesses the potential of infrared thermometry and thermal imaging for monitoring plant water stress in a commercial sugar beet field by comparing canopy temperature data acquired from a conventional thermal camera with an inexpensive infrared sensor, both mounted on a rotary-wing unmanned aerial vehicle (UAV). Measurements were taken at various phenological stages of the sugar beet growing season. Laboratory tests were performed to determine the key features for accurate temperature measurements and flight altitude. Experiments were conducted in 2014 and 2015 in experimental and commercial sugar beet fields in Southwestern Spain to (i) develop an affordable infrared temperature system suitable for mounting on a UAV to obtain thermal information, (ii) compare sugar beet canopy temperature measurements collected with the low-cost platform with those obtained from a conventional thermal camera, both mounted on a rotary-wing UAV, (iii) identify the factors that will limit the use of the low-cost system to derive temperature-based water stress indices. To accomplish these objectives, well-watered and deficit irrigated plots were established. Results indicated that the lightweight canopy temperature system was robust and reliable, although there were some constraints related to weather conditions and delimitation of the area covered by the infrared sensor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial