A Contribution to the Feasibility of the Interval Gaussian Algorithm

A Contribution to the Feasibility of the Interval Gaussian Algorithm We apply the interval Gaussian algorithm to an n × n interval matrix [A] whose comparison matrix ⟨[A]⟩ is generalized diagonally dominant. For such matrices we prove conditions for the feasibility of this method, among them a necessary and sufficient one. Moreover, we prove an equivalence between a well-known sufficient criterion for the algorithm on H matrices and a necessary and sufficient one for interval matrices whose midpoint is the identity matrix. For the more general class of interval matrices which also contain the identity matrix, but not necessarily as midpoint, we derive a criterion of infeasibility. For general matrices [A] we show how the feasibility of reducible interval matrices is connected with that of irreducible ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

A Contribution to the Feasibility of the Interval Gaussian Algorithm

Loading next page...
 
/lp/springer_journal/a-contribution-to-the-feasibility-of-the-interval-gaussian-algorithm-zAMCp72ozh
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science + Business Media, Inc.
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1007/s11155-006-4876-0
Publisher site
See Article on Publisher Site

Abstract

We apply the interval Gaussian algorithm to an n × n interval matrix [A] whose comparison matrix ⟨[A]⟩ is generalized diagonally dominant. For such matrices we prove conditions for the feasibility of this method, among them a necessary and sufficient one. Moreover, we prove an equivalence between a well-known sufficient criterion for the algorithm on H matrices and a necessary and sufficient one for interval matrices whose midpoint is the identity matrix. For the more general class of interval matrices which also contain the identity matrix, but not necessarily as midpoint, we derive a criterion of infeasibility. For general matrices [A] we show how the feasibility of reducible interval matrices is connected with that of irreducible ones.

Journal

Reliable ComputingSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off