A continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso- and macrotides

A continuous simulation approach for the estimation of extreme flood inundation in coastal river... Considering the joint probability of occurrence of high sea levels and river discharges, as well as the interactions between these sources of flooding, is of major importance to produce realistic inundation maps in river reaches affected by the sea level. In this paper, we propose a continuous simulation method for the estimation of extreme inundation in coastal river reaches. The methodology combines the generation of synthetic long-term daily time series of river discharge and sea level, the downscaling of daily values to a time resolution of a few minutes, the computation of inundation levels with an unsteady high-resolution two-dimensional model and the use of interpolation techniques to reconstruct long-term time series of water surface from a limited number of characteristic cases. The method is especially suitable for small catchments with times of concentration of a few hours, since it considers the intradiurnal variation of river discharge and sea level. The methodology was applied to the coastal town of Betanzos (NW of Spain), located at a river confluence strongly affected by the sea level. Depending on the return period and on the control point considered, the results obtained with the proposed methodology show differences up to 50 cm when compared with the standard methodology used in this region for the elaboration of flood hazard maps in accordance with the requirements of the European Directives. These results indicate the need for adaption of the standard methodology in order to produce more realistic results and a more efficient evaluation of flood hazard mitigation measures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Natural Hazards Springer Journals

A continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso- and macrotides

Loading next page...
 
/lp/springer_journal/a-continuous-simulation-approach-for-the-estimation-of-extreme-flood-Jel0DNOxIm
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Hydrogeology; Geophysics/Geodesy; Geotechnical Engineering & Applied Earth Sciences; Civil Engineering; Environmental Management
ISSN
0921-030X
eISSN
1573-0840
D.O.I.
10.1007/s11069-018-3360-6
Publisher site
See Article on Publisher Site

Abstract

Considering the joint probability of occurrence of high sea levels and river discharges, as well as the interactions between these sources of flooding, is of major importance to produce realistic inundation maps in river reaches affected by the sea level. In this paper, we propose a continuous simulation method for the estimation of extreme inundation in coastal river reaches. The methodology combines the generation of synthetic long-term daily time series of river discharge and sea level, the downscaling of daily values to a time resolution of a few minutes, the computation of inundation levels with an unsteady high-resolution two-dimensional model and the use of interpolation techniques to reconstruct long-term time series of water surface from a limited number of characteristic cases. The method is especially suitable for small catchments with times of concentration of a few hours, since it considers the intradiurnal variation of river discharge and sea level. The methodology was applied to the coastal town of Betanzos (NW of Spain), located at a river confluence strongly affected by the sea level. Depending on the return period and on the control point considered, the results obtained with the proposed methodology show differences up to 50 cm when compared with the standard methodology used in this region for the elaboration of flood hazard maps in accordance with the requirements of the European Directives. These results indicate the need for adaption of the standard methodology in order to produce more realistic results and a more efficient evaluation of flood hazard mitigation measures.

Journal

Natural HazardsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off