Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells

A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla... The coordinate expression of anthocyanin biosynthetic genes in leaves and stems of a red forma of Perilla frutescens is presumably controlled by regulatory gene(s). A Myc-like gene (Myc-rp) was isolated from a cDNA library prepared from the leaves of red P. frutescens, and its deduced amino acid sequence shows 64% identity with that of delila from snapdragon. The Myc-rp gene was expressed in leaves and roots of both red and green P. frutescens equally. Comparison of deduced amino acid sequence of Myc-rp with that of Myc-gp, the second allele isolated from a green forma of P. frutescens, indicates that the 132nd amino acid, alanine, existing in MYC-RP was changed to serine in MYC-GP. The heterologous expression of these two alleles of Myc-like gene in tobacco and tomato resulted in an increase of the anthocyanin contents in flowers of tobacco and vegetative tissues and flowers of tomato. However, the flowers of transgenic tobacco expressing the fragment with a partial deletion (encoding 1–115 amino acids deleted) of Myc-gp gave no change in anthocyanin accumulation, but some morphological changes of the flower were observed. In yeast, the MYC-RP/GP and Delila protein exhibited transactivation activity on the GAL-1 promoter from yeast and the promoter of dihydroflavonol 4-reductase (DFR) gene from P. frutescens. A transactivation domain of MYC-RP/GP and Delila could be located in the region between the 193rd and the 420th amino acid of MYC-RP/GP proteins. Our data indicate that this Myc-like gene presumably functions in the regulation of anthocyanin biosynthesis similarly in different tissues of dicot plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells

Loading next page...
 
/lp/springer_journal/a-constitutively-expressed-myc-like-gene-involved-in-anthocyanin-7Q7GINGl0R

References (43)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1006237529040
Publisher site
See Article on Publisher Site

Abstract

The coordinate expression of anthocyanin biosynthetic genes in leaves and stems of a red forma of Perilla frutescens is presumably controlled by regulatory gene(s). A Myc-like gene (Myc-rp) was isolated from a cDNA library prepared from the leaves of red P. frutescens, and its deduced amino acid sequence shows 64% identity with that of delila from snapdragon. The Myc-rp gene was expressed in leaves and roots of both red and green P. frutescens equally. Comparison of deduced amino acid sequence of Myc-rp with that of Myc-gp, the second allele isolated from a green forma of P. frutescens, indicates that the 132nd amino acid, alanine, existing in MYC-RP was changed to serine in MYC-GP. The heterologous expression of these two alleles of Myc-like gene in tobacco and tomato resulted in an increase of the anthocyanin contents in flowers of tobacco and vegetative tissues and flowers of tomato. However, the flowers of transgenic tobacco expressing the fragment with a partial deletion (encoding 1–115 amino acids deleted) of Myc-gp gave no change in anthocyanin accumulation, but some morphological changes of the flower were observed. In yeast, the MYC-RP/GP and Delila protein exhibited transactivation activity on the GAL-1 promoter from yeast and the promoter of dihydroflavonol 4-reductase (DFR) gene from P. frutescens. A transactivation domain of MYC-RP/GP and Delila could be located in the region between the 193rd and the 420th amino acid of MYC-RP/GP proteins. Our data indicate that this Myc-like gene presumably functions in the regulation of anthocyanin biosynthesis similarly in different tissues of dicot plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

There are no references for this article.