A computer vision assisted system for autonomous forklift vehicles in real factory environment

A computer vision assisted system for autonomous forklift vehicles in real factory environment Industry 4.0 is an important trend in factory automation nowadays. Among the Automated-Storage-and-Retrieval-System (ASRS) is one of the most important issues for industry. It is widely used in a variety of industries for a variety of storage applications in factories and warehouses. However, the cost of constructing an ASRS is so high that most small/medium enterprises cannot afford it. A forklift system is a cheaper alternative to a complicated ASRS. In this work, a new pallet detection method that uses an Adaptive Structure Feature (ASF) and Direction Weighted Overlapping (DWO) ratio to allow forklifts to pick up a pallet is proposed, using a monocular vision system on the forklift. Combining the ASF and DWO ratio for pallet detection, the proposed method removes most of the non-stationary (dynamic) background and significantly increases the processing efficiency. A Haar like-based Adaboost scheme uses an AS for pallets algorithm to detect pallets. It detects the pallet in a dark environment. Finally, by calculating the DWO ratio between the detected pallets and tracking records, it avoids erroneous candidates during object tracking. Therefore, this work improves the pallet detection to solve the problem with an effective design. As results show that the hybrid algorithms that are proposed in this work increase the average pallet detection rate by 95 %. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

A computer vision assisted system for autonomous forklift vehicles in real factory environment

Loading next page...
 
/lp/springer_journal/a-computer-vision-assisted-system-for-autonomous-forklift-vehicles-in-oiO1204RGt
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-016-4123-6
Publisher site
See Article on Publisher Site

Abstract

Industry 4.0 is an important trend in factory automation nowadays. Among the Automated-Storage-and-Retrieval-System (ASRS) is one of the most important issues for industry. It is widely used in a variety of industries for a variety of storage applications in factories and warehouses. However, the cost of constructing an ASRS is so high that most small/medium enterprises cannot afford it. A forklift system is a cheaper alternative to a complicated ASRS. In this work, a new pallet detection method that uses an Adaptive Structure Feature (ASF) and Direction Weighted Overlapping (DWO) ratio to allow forklifts to pick up a pallet is proposed, using a monocular vision system on the forklift. Combining the ASF and DWO ratio for pallet detection, the proposed method removes most of the non-stationary (dynamic) background and significantly increases the processing efficiency. A Haar like-based Adaboost scheme uses an AS for pallets algorithm to detect pallets. It detects the pallet in a dark environment. Finally, by calculating the DWO ratio between the detected pallets and tracking records, it avoids erroneous candidates during object tracking. Therefore, this work improves the pallet detection to solve the problem with an effective design. As results show that the hybrid algorithms that are proposed in this work increase the average pallet detection rate by 95 %.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Nov 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off