A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics

A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar... Since the last few decades, light-absorbing materials based on CuInGaSe2 (CIGS), CuInS2 (CIS), and CdTe have dominated the research in thin-film solar cells. To fabricate large-scale solar cells from these materials, problems may arise due to limited availability of the constituents, viz. Se, In, Cd, and Te, and the toxicity of some of these elements. Hence, recent research efforts are attentive toward abundantly available non-toxic, larger value of absorption coefficient and non-conventional elements. The Cu3BiS3 having wittichenite orthorhombic structure is one the most promising absorber layer candidates for low-cost thin-film solar cells. It has suitable direct band gap (1.10–1.86 eV), large absorption coefficient (105 cm−1) with composition of earth abundant, and relatively non-toxic and cost-effective constituents. Till now, a majority work was done on the preparation of Cu3BiS3 thin films by various techniques. Therefore, a comprehensive review of recent literature of Cu3BiS3 is urgently required. This paper will review the various techniques that have been used to deposit Cu3BiS3 semiconductor with the hope of new paths for the beginner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nanotechnology for Environmental Engineering Springer Journals

A comprehensive review on synthesis and characterizations of Cu3BiS3 thin films for solar photovoltaics

Loading next page...
 
/lp/springer_journal/a-comprehensive-review-on-synthesis-and-characterizations-of-cu3bis3-Xts9oQY0Nm
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Earth Sciences; Environmental Science and Engineering; Nanotechnology and Microengineering; Environment, general
ISSN
2365-6379
eISSN
2365-6387
D.O.I.
10.1007/s41204-017-0025-8
Publisher site
See Article on Publisher Site

Abstract

Since the last few decades, light-absorbing materials based on CuInGaSe2 (CIGS), CuInS2 (CIS), and CdTe have dominated the research in thin-film solar cells. To fabricate large-scale solar cells from these materials, problems may arise due to limited availability of the constituents, viz. Se, In, Cd, and Te, and the toxicity of some of these elements. Hence, recent research efforts are attentive toward abundantly available non-toxic, larger value of absorption coefficient and non-conventional elements. The Cu3BiS3 having wittichenite orthorhombic structure is one the most promising absorber layer candidates for low-cost thin-film solar cells. It has suitable direct band gap (1.10–1.86 eV), large absorption coefficient (105 cm−1) with composition of earth abundant, and relatively non-toxic and cost-effective constituents. Till now, a majority work was done on the preparation of Cu3BiS3 thin films by various techniques. Therefore, a comprehensive review of recent literature of Cu3BiS3 is urgently required. This paper will review the various techniques that have been used to deposit Cu3BiS3 semiconductor with the hope of new paths for the beginner.

Journal

Nanotechnology for Environmental EngineeringSpringer Journals

Published: Aug 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off