A Comprehensive Differential Game Theoretic Solution to a Game of Two Cars

A Comprehensive Differential Game Theoretic Solution to a Game of Two Cars In this paper, a pursuit-evasion game involving two non-holonomic agents is examined using the theory of differential games. It is assumed that the two players move on the Euclidean plane with fixed but different speeds and they each have a lower bound on their achievable turn radii. Both players steer at each instant by choosing their turn radii value and directions of turn. By formulating the game as a game of kind, we characterize the regions of initial conditions that lead to capture as well as the regions that lead to evasion, when both the players play optimally. The game is then formulated as a game of degree to obtain time-optimal paths for the pursuer and evader inside a capture region. Besides, all possible scenarios are considered for both players that differ in speed ratios and maneuverability constraints. Solutions are provided for those cases using appropriate simulation parameters, which aid in understanding the characteristics of the game of two cars under a wide range of constraints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Optimization Theory and Applications Springer Journals

A Comprehensive Differential Game Theoretic Solution to a Game of Two Cars

Loading next page...
 
/lp/springer_journal/a-comprehensive-differential-game-theoretic-solution-to-a-game-of-two-C0pXnVj20E
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory
ISSN
0022-3239
eISSN
1573-2878
D.O.I.
10.1007/s10957-017-1134-z
Publisher site
See Article on Publisher Site

Abstract

In this paper, a pursuit-evasion game involving two non-holonomic agents is examined using the theory of differential games. It is assumed that the two players move on the Euclidean plane with fixed but different speeds and they each have a lower bound on their achievable turn radii. Both players steer at each instant by choosing their turn radii value and directions of turn. By formulating the game as a game of kind, we characterize the regions of initial conditions that lead to capture as well as the regions that lead to evasion, when both the players play optimally. The game is then formulated as a game of degree to obtain time-optimal paths for the pursuer and evader inside a capture region. Besides, all possible scenarios are considered for both players that differ in speed ratios and maneuverability constraints. Solutions are provided for those cases using appropriate simulation parameters, which aid in understanding the characteristics of the game of two cars under a wide range of constraints.

Journal

Journal of Optimization Theory and ApplicationsSpringer Journals

Published: Jul 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off