A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data

A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing... This study investigated the performance of multiple imputations with Expectation-Maximization (EM) algorithm and Monte Carlo Markov chain (MCMC) method in missing data imputation. We compared the accuracy of imputation based on some real data and set up two extreme scenarios and conducted both empirical and simulation studies to examine the effects of missing data rates and number of items used for imputation. In the empirical study, the scenario represented item of highest missing rate from a domain with fewest items. In the simulation study, we selected a domain with most items and the item imputed has lowest missing rate. In the empirical study, the results showed there was no significant difference between EM algorithm and MCMC method for item imputation, and number of items used for imputation has little impact, either. Compared with the actual observed values, the middle responses of 3 and 4 were over-imputed, and the extreme responses of 1, 2 and 5 were under-represented. The similar patterns occurred for domain imputation, and no significant difference between EM algorithm and MCMC method and number of items used for imputation has little impact. In the simulation study, we chose environmental domain to examine the effect of the following variables: EM algorithm and MCMC method, missing data rates, and number of items used for imputation. Again, there was no significant difference between EM algorithm and MCMC method. The accuracy rates did not significantly reduce with increase in the proportions of missing data. Number of items used for imputation has some contribution to accuracy of imputation, but not as much as expected. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data

Loading next page...
 
/lp/springer_journal/a-comparison-of-multiple-imputation-with-em-algorithm-and-mcmc-method-2DRhRwOFzk
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-008-9196-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial