A comparison of feeding biomechanics between two parrotfish species from the Gulf of California

A comparison of feeding biomechanics between two parrotfish species from the Gulf of California Parrotfish are amongst the most abundant teleost species in the Gulf of California, and yet their feeding ecology and the impact they have on the reef ecosystems in this region remain unknown. Here, a well-established computational model of jaw biomechanics in fishes (MandibLever 4.0) was used to simulate the mandibular dynamics during feeding of the two dominant reef-dwelling parrotfish species in the Gulf of California (Scarus ghobban and S. perrico), and to infer, to some extent, their potential ecological role. A total of 52 specimens were collected from six localities in La Paz Bay and the Los Cabos region between March and October 2015. The model predicted a greater jaw closing force and power in the bite of S. perrico, but a higher mandibular rotating velocity in S. ghobban. The calculated differences in their bite dynamics suggest that these two species may exploit different food resources, driven by food hardness. Moreover, the variation in their mandibular morphology and predicted feeding behavior might imply the presence in the Gulf of California of the two previously described functional groups found in reef-dwelling parrotfishes: excavators and scrapers. As an excavator, S. perrico would be functioning as one of the major agents of external bioerosion in the rocky reefs of the Gulf of California, whereas, as a scraper, S. ghobban would facilitate the reworking and hydrological transport of fine sediments. This work lays the foundation for future studies on the feeding ecology and impact of parrotfishes on the reefs of the Gulf of California. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zoomorphology Springer Journals

A comparison of feeding biomechanics between two parrotfish species from the Gulf of California

Loading next page...
 
/lp/springer_journal/a-comparison-of-feeding-biomechanics-between-two-parrotfish-species-rggI1L4HV0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology; Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography
ISSN
0720-213X
eISSN
1432-234X
D.O.I.
10.1007/s00435-017-0383-6
Publisher site
See Article on Publisher Site

Abstract

Parrotfish are amongst the most abundant teleost species in the Gulf of California, and yet their feeding ecology and the impact they have on the reef ecosystems in this region remain unknown. Here, a well-established computational model of jaw biomechanics in fishes (MandibLever 4.0) was used to simulate the mandibular dynamics during feeding of the two dominant reef-dwelling parrotfish species in the Gulf of California (Scarus ghobban and S. perrico), and to infer, to some extent, their potential ecological role. A total of 52 specimens were collected from six localities in La Paz Bay and the Los Cabos region between March and October 2015. The model predicted a greater jaw closing force and power in the bite of S. perrico, but a higher mandibular rotating velocity in S. ghobban. The calculated differences in their bite dynamics suggest that these two species may exploit different food resources, driven by food hardness. Moreover, the variation in their mandibular morphology and predicted feeding behavior might imply the presence in the Gulf of California of the two previously described functional groups found in reef-dwelling parrotfishes: excavators and scrapers. As an excavator, S. perrico would be functioning as one of the major agents of external bioerosion in the rocky reefs of the Gulf of California, whereas, as a scraper, S. ghobban would facilitate the reworking and hydrological transport of fine sediments. This work lays the foundation for future studies on the feeding ecology and impact of parrotfishes on the reefs of the Gulf of California.

Journal

ZoomorphologySpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off