A comparison of centring parameterisations of Gaussian process-based models for Bayesian computation using MCMC

A comparison of centring parameterisations of Gaussian process-based models for Bayesian... Markov chain Monte Carlo (MCMC) algorithms for Bayesian computation for Gaussian process-based models under default parameterisations are slow to converge due to the presence of spatial- and other-induced dependence structures. The main focus of this paper is to study the effect of the assumed spatial correlation structure on the convergence properties of the Gibbs sampler under the default non-centred parameterisation and a rival centred parameterisation (CP), for the mean structure of a general multi-process Gaussian spatial model. Our investigation finds answers to many pertinent, but as yet unanswered, questions on the choice between the two. Assuming the covariance parameters to be known, we compare the exact rates of convergence of the two by varying the strength of the spatial correlation, the level of covariance tapering, the scale of the spatially varying covariates, the number of data points, the number and the structure of block updating of the spatial effects and the amount of smoothness assumed in a Matérn covariance function. We also study the effects of introducing differing levels of geometric anisotropy in the spatial model. The case of unknown variance parameters is investigated using well-known MCMC convergence diagnostics. A simulation study and a real-data example on modelling air pollution levels in London are used for illustrations. A generic pattern emerges that the CP is preferable in the presence of more spatial correlation or more information obtained through, for example, additional data points or by increased covariate variability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

A comparison of centring parameterisations of Gaussian process-based models for Bayesian computation using MCMC

Loading next page...
 
/lp/springer_journal/a-comparison-of-centring-parameterisations-of-gaussian-process-based-0u0QUeXpOm
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9700-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial