A Comparison of Bit-Parallel and Bit-Serial Architectures for WDM Networks

A Comparison of Bit-Parallel and Bit-Serial Architectures for WDM Networks Wavelength division multiplexing (WDM) is emerging as a viable solution to reduce the electronic processing bottleneck in very high-speed optical networks. A set of parallel and independent channels are created on a single fiber using this technique. Parallel communication utilizing the WDM channels may be accomplished in two ways: (i) bit serial, where each source-destination pair communicates using one wavelength and data are sent serially on this wavelength; and (ii) bit parallel, where each source-destination pair communicates using a subset of channels and data are sent in multiple-bit words. Three architectures are studied in the paper: single-hop bit-serial star, single-hop bit-parallel star, and multi-hop bit-parallel shufflenet. The objective of this paper is to evaluate these architectures with respect to average packet delay, network utilization, and link throughput. It is shown that the Shufflenet offers the lowest latency but suffers from high cost and low link throughput. The star topology with bit-parallel access offers lower latency than the bit-serial star, but is more expensive to implement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Comparison of Bit-Parallel and Bit-Serial Architectures for WDM Networks

Loading next page...
 
/lp/springer_journal/a-comparison-of-bit-parallel-and-bit-serial-architectures-for-wdm-w2sqqc4AJa
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1010085218150
Publisher site
See Article on Publisher Site

Abstract

Wavelength division multiplexing (WDM) is emerging as a viable solution to reduce the electronic processing bottleneck in very high-speed optical networks. A set of parallel and independent channels are created on a single fiber using this technique. Parallel communication utilizing the WDM channels may be accomplished in two ways: (i) bit serial, where each source-destination pair communicates using one wavelength and data are sent serially on this wavelength; and (ii) bit parallel, where each source-destination pair communicates using a subset of channels and data are sent in multiple-bit words. Three architectures are studied in the paper: single-hop bit-serial star, single-hop bit-parallel star, and multi-hop bit-parallel shufflenet. The objective of this paper is to evaluate these architectures with respect to average packet delay, network utilization, and link throughput. It is shown that the Shufflenet offers the lowest latency but suffers from high cost and low link throughput. The star topology with bit-parallel access offers lower latency than the bit-serial star, but is more expensive to implement.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off