A Comparison of Allocation Policies in Wavelength Routing Networks*

A Comparison of Allocation Policies in Wavelength Routing Networks* We consider wavelength routing networks with and without wavelength converters, and several wavelength allocation policies. Through numerical and simulation results we obtain upper and lower bounds on the blocking probabilities for two wavelength allocation policies that are most likely to be used in practice, namely, most-used and first-fit allocation. These bounds are the blocking probabilities obtained by the random wavelength allocation policy with either no converters or with converters at all nodes of the network. Furthermore, we demonstrate that using the most-used or first-fit policies gives an improvement on call blocking probabilities that is equivalent to employing converters at a number of nodes in a network with the random allocation policy. These results have been obtained for a wide range of loads for both single-path and general mesh topology networks. The main conclusion of our work is that the gains obtained by employing specialized and expensive hardware (namely, wavelength converters) can be realized cost-effectively by making more intelligent choices in software (namely, the wavelength allocation policy). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Comparison of Allocation Policies in Wavelength Routing Networks*

Loading next page...
 
/lp/springer_journal/a-comparison-of-allocation-policies-in-wavelength-routing-networks-GbaiS4SrTI
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1010056408572
Publisher site
See Article on Publisher Site

Abstract

We consider wavelength routing networks with and without wavelength converters, and several wavelength allocation policies. Through numerical and simulation results we obtain upper and lower bounds on the blocking probabilities for two wavelength allocation policies that are most likely to be used in practice, namely, most-used and first-fit allocation. These bounds are the blocking probabilities obtained by the random wavelength allocation policy with either no converters or with converters at all nodes of the network. Furthermore, we demonstrate that using the most-used or first-fit policies gives an improvement on call blocking probabilities that is equivalent to employing converters at a number of nodes in a network with the random allocation policy. These results have been obtained for a wide range of loads for both single-path and general mesh topology networks. The main conclusion of our work is that the gains obtained by employing specialized and expensive hardware (namely, wavelength converters) can be realized cost-effectively by making more intelligent choices in software (namely, the wavelength allocation policy).

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 8, 2004

References

  • Models of blocking probability in all-optical networks with and without wavelength changers
    Barry, R. A.; Humblet, P. A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off