A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves

A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints... In this study, the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn intermetallic joints, formed by the transient liquid phase (TLP) soldering process with and without the assistance of ultrasonic waves (USWs), were compared. After the application of USWs in the TLP soldering process, Cu-Sn intermetallic compounds (IMCs) exhibited a novel noninterfacial growth pattern in the molten solder interlayer. The resulting Cu6Sn5 and Cu3Sn joints consisted of refined equiaxed IMC grains with average sizes of 3 and 2.3 µm, respectively. The Cu6Sn5 grains in the ultrasonically soldered intermetallic joints demonstrated uniform mechanical properties with elastic modulus and hardness values of 123.0 and 5.98 GPa, respectively, while those of Cu3Sn grains were 133.9 and 5.08 GPa, respectively. The shear strengths of ultrasonically soldered Cu6Sn5 and Cu3Sn joints were measured to be 60 and 65 MPa, respectively, higher than that for reflow-soldered intermetallic joints. Ultrasonically soldered Cu6Sn5 and Cu3Sn joints both exhibited a combination of transgranular and intergranular fractures during shear testing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallurgical and Materials Transactions A Springer Journals

A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves

Loading next page...
 
/lp/springer_journal/a-comparative-study-on-the-microstructure-and-mechanical-properties-of-hhupA0oz66
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
1073-5623
eISSN
1543-1940
D.O.I.
10.1007/s11661-018-4664-6
Publisher site
See Article on Publisher Site

Abstract

In this study, the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn intermetallic joints, formed by the transient liquid phase (TLP) soldering process with and without the assistance of ultrasonic waves (USWs), were compared. After the application of USWs in the TLP soldering process, Cu-Sn intermetallic compounds (IMCs) exhibited a novel noninterfacial growth pattern in the molten solder interlayer. The resulting Cu6Sn5 and Cu3Sn joints consisted of refined equiaxed IMC grains with average sizes of 3 and 2.3 µm, respectively. The Cu6Sn5 grains in the ultrasonically soldered intermetallic joints demonstrated uniform mechanical properties with elastic modulus and hardness values of 123.0 and 5.98 GPa, respectively, while those of Cu3Sn grains were 133.9 and 5.08 GPa, respectively. The shear strengths of ultrasonically soldered Cu6Sn5 and Cu3Sn joints were measured to be 60 and 65 MPa, respectively, higher than that for reflow-soldered intermetallic joints. Ultrasonically soldered Cu6Sn5 and Cu3Sn joints both exhibited a combination of transgranular and intergranular fractures during shear testing.

Journal

Metallurgical and Materials Transactions ASpringer Journals

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off