A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines

A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines The genetic map of chromosome 5B has been constructed by using microsatellite (SSR) analysis of 381 plants from the F2 population produced by cross of the Chinese Spring (CS) and Renan cultivars. Initially, 180 SSR markers for the common wheat 5B chromosome have been used for analysis of these cultivars. The 32 markers able to detect polymorphism between these cultivars have been located on the genetic map of chromosome 5B. Cytogenetic mapping has involved a set of CS 5B chromosome deletion lines. Totally, 51 SSR markers have been located in ten regions (deletion bins) of this chromosome by SSR analysis of these deletion lines. Five genes—TaCBFIIIc-B10, Vrn-B1, Chi-B1, Skr, and Ph1—have been integrated into the cytogenetic map of chromosome 5B using the markers either specific of or tightly linked to the genes in question. Comparison of the genetic and cytogenetic maps suggests that recombination is suppressed in the pericentromeric region of chromosome 5B, especially in the short arm segment. The 18 markers localized to deletion bins 5BL16-0.79-1.00 and 5BL18-0.66-0.79 have been used to analyze common wheat introgression lines L842, L5366-180, L73/00i, and L21-4, carrying fragments of alien genomes in the terminal region of 5B long arm. L5366-180 and L842 lines carry a fragment of the Triticum timopheevii 5GL chromosome, while L73/00i and L21-4 lines, a fragment of the Aegilops speltoides 5SL chromosome. As has been shown, the translocated fragments in these four lines are of different lengths, allowing bin 5BL18-0.66-0.79 to be divided into three shorter regions. The utility of wheat introgression lines carrying alien translocations for increasing the resolution of cytogenetic mapping is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines

Loading next page...
 
/lp/springer_journal/a-comparative-genetic-and-cytogenetic-mapping-of-wheat-chromosome-5b-JGX0nLOH9T
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795413120132
Publisher site
See Article on Publisher Site

Abstract

The genetic map of chromosome 5B has been constructed by using microsatellite (SSR) analysis of 381 plants from the F2 population produced by cross of the Chinese Spring (CS) and Renan cultivars. Initially, 180 SSR markers for the common wheat 5B chromosome have been used for analysis of these cultivars. The 32 markers able to detect polymorphism between these cultivars have been located on the genetic map of chromosome 5B. Cytogenetic mapping has involved a set of CS 5B chromosome deletion lines. Totally, 51 SSR markers have been located in ten regions (deletion bins) of this chromosome by SSR analysis of these deletion lines. Five genes—TaCBFIIIc-B10, Vrn-B1, Chi-B1, Skr, and Ph1—have been integrated into the cytogenetic map of chromosome 5B using the markers either specific of or tightly linked to the genes in question. Comparison of the genetic and cytogenetic maps suggests that recombination is suppressed in the pericentromeric region of chromosome 5B, especially in the short arm segment. The 18 markers localized to deletion bins 5BL16-0.79-1.00 and 5BL18-0.66-0.79 have been used to analyze common wheat introgression lines L842, L5366-180, L73/00i, and L21-4, carrying fragments of alien genomes in the terminal region of 5B long arm. L5366-180 and L842 lines carry a fragment of the Triticum timopheevii 5GL chromosome, while L73/00i and L21-4 lines, a fragment of the Aegilops speltoides 5SL chromosome. As has been shown, the translocated fragments in these four lines are of different lengths, allowing bin 5BL18-0.66-0.79 to be divided into three shorter regions. The utility of wheat introgression lines carrying alien translocations for increasing the resolution of cytogenetic mapping is discussed.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 10, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off