A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi

A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena... C-banding of chromosomes and in situ hybridization with the probes pTa71 and pTa794 were used for a comparative cytogenetic study of the three tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. These species were similar in the structure and C-banding patterns of several chromosomes as well as in the location of the loci 5S rRNA genes and major NOR sites; however, they differed in the number and localization of minor 45S rDNA loci as well as in the morphology and distribution of heterochromatin in some chromosomes. According to the data obtained, A. insularis is closer to A. magna, whereas A. murphyi is somewhat separated from these two species. Presumably, all the three studied species originated from the same tetraploid ancestor, and their divergence is connected with various species-specific chromosome rearrangements. The evolution of A. murphyi is likely to have occurred independently of the other two species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi

Loading next page...
 
/lp/springer_journal/a-comparative-cytogenetic-study-of-the-tetraploid-oat-species-with-the-PkkrPSfYt5
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279540706004X
Publisher site
See Article on Publisher Site

Abstract

C-banding of chromosomes and in situ hybridization with the probes pTa71 and pTa794 were used for a comparative cytogenetic study of the three tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. These species were similar in the structure and C-banding patterns of several chromosomes as well as in the location of the loci 5S rRNA genes and major NOR sites; however, they differed in the number and localization of minor 45S rDNA loci as well as in the morphology and distribution of heterochromatin in some chromosomes. According to the data obtained, A. insularis is closer to A. magna, whereas A. murphyi is somewhat separated from these two species. Presumably, all the three studied species originated from the same tetraploid ancestor, and their divergence is connected with various species-specific chromosome rearrangements. The evolution of A. murphyi is likely to have occurred independently of the other two species.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off