A Compact Fusion–Fission Hybrid Reactor

A Compact Fusion–Fission Hybrid Reactor Up today, two hyper research projects to achieve nuclear fusion energy exist; inertial confinement fusion (ICF) driven by laser, called national ignition facility (NIF) and magnetic confinement fusion the international thermonuclear experimental reactor (ITER) project. In reaching the required temperature and pressure, to ignite nuclear fusion reactor, is technolog- ically complex and economically expensive. Thus, a breakthrough and a short cut, other alternative methods should be considered. Pulsed power ICF driver with repetitive pulse operation, mainly dense plasma focus (DPF) machines for high yield fusion neutrons could be taken as drivers for the fission blanket operation. The setup can be a cost-effective and efficient. In this article, we consider a set of two medium energy sizes DPF to produce simultaneously dense plasma columns, operating as thermonuclear plasma driver, to pierce the pellet target for external nuclear fusion reactions. These DPFs produce sufficient fast neutrons for the fission process in the neutral uranium or thorium and/or weak enriched uranium blanket. The drive systems and the concept for delivering thermonuclear plasma to pellets target in the magnetic free zone of central region will be presented. The feasibility of such fusion–fission hybrid reactor will be discussed. Keywords Dense plasma focus  Inertial http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Fusion Energy Springer Journals

A Compact Fusion–Fission Hybrid Reactor

Loading next page...
 
/lp/springer_journal/a-compact-fusion-fission-hybrid-reactor-1ZjTjlnoHZ
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; Nuclear Fusion; Plasma Physics; Nuclear Energy; Physics of Energy Technology; Sustainable Development
ISSN
0164-0313
eISSN
1572-9591
D.O.I.
10.1007/s10894-018-0166-1
Publisher site
See Article on Publisher Site

Abstract

Up today, two hyper research projects to achieve nuclear fusion energy exist; inertial confinement fusion (ICF) driven by laser, called national ignition facility (NIF) and magnetic confinement fusion the international thermonuclear experimental reactor (ITER) project. In reaching the required temperature and pressure, to ignite nuclear fusion reactor, is technolog- ically complex and economically expensive. Thus, a breakthrough and a short cut, other alternative methods should be considered. Pulsed power ICF driver with repetitive pulse operation, mainly dense plasma focus (DPF) machines for high yield fusion neutrons could be taken as drivers for the fission blanket operation. The setup can be a cost-effective and efficient. In this article, we consider a set of two medium energy sizes DPF to produce simultaneously dense plasma columns, operating as thermonuclear plasma driver, to pierce the pellet target for external nuclear fusion reactions. These DPFs produce sufficient fast neutrons for the fission process in the neutral uranium or thorium and/or weak enriched uranium blanket. The drive systems and the concept for delivering thermonuclear plasma to pellets target in the magnetic free zone of central region will be presented. The feasibility of such fusion–fission hybrid reactor will be discussed. Keywords Dense plasma focus  Inertial

Journal

Journal of Fusion EnergySpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off