A Commensal Strain of Staphylococcus epidermidis Overexpresses Membrane Proteins Associated with Pathogenesis When Grown in Biofilms

A Commensal Strain of Staphylococcus epidermidis Overexpresses Membrane Proteins Associated with... Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The most important factor in the pathogenesis of these infections is the formation of bacterial biofilms. Bacteria grown in biofilms are more resistant to antibiotics and to the immune defence system than planktonic bacteria. In these infections, the antimicrobial therapy usually fails and the removal of the biofilm-coated implanted device is the only effective solution. In this study, three proteomic approaches were performed to investigate membrane proteins associated to biofilm formation: (i) sample fractionation by gel electrophoresis, followed by isotopic labelling and LC–MS/MS analysis, (ii) in-solution sample preparation, followed by isotopic labelling and LC–MS/MS analysis and (iii) in-solution sample preparation and label-free LC–MS/MS analysis. We found that the commensal strain S. epidermidis CECT 231 grown in biofilms expressed higher levels of five membrane and membrane-associated proteins involved in pathogenesis: accumulation-associated protein, staphylococcal secretory antigen, signal transduction protein TRAP, ribonuclease Y and phenol soluble modulin beta 1 when compared with bacteria grown under planktonic conditions. These results indicate that a commensal strain can acquire a pathogenic phenotype depending on the mode of growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Commensal Strain of Staphylococcus epidermidis Overexpresses Membrane Proteins Associated with Pathogenesis When Grown in Biofilms

Loading next page...
 
/lp/springer_journal/a-commensal-strain-of-staphylococcus-epidermidis-overexpresses-TYnDXgaebZ
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9801-1
Publisher site
See Article on Publisher Site

Abstract

Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The most important factor in the pathogenesis of these infections is the formation of bacterial biofilms. Bacteria grown in biofilms are more resistant to antibiotics and to the immune defence system than planktonic bacteria. In these infections, the antimicrobial therapy usually fails and the removal of the biofilm-coated implanted device is the only effective solution. In this study, three proteomic approaches were performed to investigate membrane proteins associated to biofilm formation: (i) sample fractionation by gel electrophoresis, followed by isotopic labelling and LC–MS/MS analysis, (ii) in-solution sample preparation, followed by isotopic labelling and LC–MS/MS analysis and (iii) in-solution sample preparation and label-free LC–MS/MS analysis. We found that the commensal strain S. epidermidis CECT 231 grown in biofilms expressed higher levels of five membrane and membrane-associated proteins involved in pathogenesis: accumulation-associated protein, staphylococcal secretory antigen, signal transduction protein TRAP, ribonuclease Y and phenol soluble modulin beta 1 when compared with bacteria grown under planktonic conditions. These results indicate that a commensal strain can acquire a pathogenic phenotype depending on the mode of growth.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 3, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off