A color-coded backlighted defocusing digital particle image velocimetry system

A color-coded backlighted defocusing digital particle image velocimetry system Defocusing digital particle image velocimetry (DDPIV), as a true three-dimensional (3D) measurement technique, allows for the measurement of 3D velocities within a volume. Initially designed using a single CCD and 3-pinhole mask (Willert and Gharib in Exp Fluids 12:353–358, 1992), it has evolved into a multi-camera system in order to overcome the limitations of image saturation due to multiple exposures of each particle. In order to still use a single camera and overcome this limitation, we have modified the original single CCD implementation by placing different color filters over each pinhole, thus color-coding each pinhole exposure, and using a 3-CCD color camera for image acquisition. Due to the pinhole mask, there exists the problem of a significant lack of illumination in a conventional lighting setup, which we have solved by backlighting the field-of-view and seeding the flow with black particles. This produces images with a white background superimposed with colored triple exposures of each particle. A color space linear transformation is used to allow for accurate identification of each pinhole exposure when the color filters’ spectrum does not match those of the 3-CCD color camera. Because the imaging is performed with a multi-element lens instead of a single-element lens, an effective pinhole separation, d e, is defined when using a pinhole mask within a multi-element lens. Calibration results of the system with and without fluid are performed and compared, and a correction of the effective pinhole separation, d e, due to refraction through multiple surfaces is proposed. Uncertainty analyses are also performed, and the technique is successfully applied to a buoyancy-driven flow, where a 3D velocity field is extracted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A color-coded backlighted defocusing digital particle image velocimetry system

Loading next page...
Copyright © 2008 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial