A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis

A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible... Cumulative studies have demonstrated that dengue virus infection results in the induction of apoptosis of certain cells in vitro. Moreover, apoptosis of microvascular endothelial cells in the brain and in the intestinal serosa has been demonstrated postmortem in dengue virus (DENV)-infected patients. In this work, human microvascular endothelial cells (HMEC-1) infected with a DENV-2 clinical isolate, or HMEC-1 cells transfected with its protease sequence (NS3pro) or its complex (NS2BNS3pro) were able to trigger apoptosis after 24 h of infection or transfection. The infected or transfected HMEC-1 cells displayed the distinctive apoptotic hallmarks, which include cytoplasmic shrinkage and plasma membrane blebbing. In addition, the transfected HMEC-1 cells showed biochemical changes such as exposure of phosphatidylserine on the outer leaflet of the plasma membrane, TUNEL positivity, caspase 3 activation and cleaved PARP, a central regulator of apoptosis. These findings suggest the role of such proteins from the clinical isolate in the induction of apoptosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

A clinical isolate of dengue virus and its proteins induce apoptosis in HMEC-1 cells: a possible implication in pathogenesis

Loading next page...
 
/lp/springer_journal/a-clinical-isolate-of-dengue-virus-and-its-proteins-induce-apoptosis-QCUsP271xI
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0396-7
Publisher site
See Article on Publisher Site

Abstract

Cumulative studies have demonstrated that dengue virus infection results in the induction of apoptosis of certain cells in vitro. Moreover, apoptosis of microvascular endothelial cells in the brain and in the intestinal serosa has been demonstrated postmortem in dengue virus (DENV)-infected patients. In this work, human microvascular endothelial cells (HMEC-1) infected with a DENV-2 clinical isolate, or HMEC-1 cells transfected with its protease sequence (NS3pro) or its complex (NS2BNS3pro) were able to trigger apoptosis after 24 h of infection or transfection. The infected or transfected HMEC-1 cells displayed the distinctive apoptotic hallmarks, which include cytoplasmic shrinkage and plasma membrane blebbing. In addition, the transfected HMEC-1 cells showed biochemical changes such as exposure of phosphatidylserine on the outer leaflet of the plasma membrane, TUNEL positivity, caspase 3 activation and cleaved PARP, a central regulator of apoptosis. These findings suggest the role of such proteins from the clinical isolate in the induction of apoptosis.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off