A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model

A classification of university courses based on students’ satisfaction: an application of a... Over the past years, Italian universities have come under increased pressure to be more competitive and attract more students, and students’ satisfaction has received increasing attention. Students’ opinions about a few aspects of academic life are sought by Italian universities in the form of a satisfaction feedback questionnaire. The aim of this paper is to classify university courses into homogeneous classes with respect to the level of students’ satisfaction through the use of a two-level mixture item response model. The data are drawn from the Italian questionnaire on students’ satisfaction administered at a Faculty of Political Sciences. The latent variables measured by the questionnaire are detected performing a model-based hierarchical clustering. Then, a special case of multilevel mixture factor model characterised by an item response parameterisation and discrete latent variables at all hierarchical levels is estimated. The study allowed us to ascertain (i) the latent dimensionality of students’ satisfaction with higher education courses; (ii) the varied effect of first and second-level covariates on the satisfaction dimensions; and (iii) the different sources of strength/weaknesses of the best and worst courses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

A classification of university courses based on students’ satisfaction: an application of a two-level mixture item response model

Loading next page...
 
/lp/springer_journal/a-classification-of-university-courses-based-on-students-satisfaction-LBppbGAbhM
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-014-0101-0
Publisher site
See Article on Publisher Site

Abstract

Over the past years, Italian universities have come under increased pressure to be more competitive and attract more students, and students’ satisfaction has received increasing attention. Students’ opinions about a few aspects of academic life are sought by Italian universities in the form of a satisfaction feedback questionnaire. The aim of this paper is to classify university courses into homogeneous classes with respect to the level of students’ satisfaction through the use of a two-level mixture item response model. The data are drawn from the Italian questionnaire on students’ satisfaction administered at a Faculty of Political Sciences. The latent variables measured by the questionnaire are detected performing a model-based hierarchical clustering. Then, a special case of multilevel mixture factor model characterised by an item response parameterisation and discrete latent variables at all hierarchical levels is estimated. The study allowed us to ascertain (i) the latent dimensionality of students’ satisfaction with higher education courses; (ii) the varied effect of first and second-level covariates on the satisfaction dimensions; and (iii) the different sources of strength/weaknesses of the best and worst courses.

Journal

Quality & QuantitySpringer Journals

Published: Sep 21, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off