A chemical-genetic approach to elucidate protein kinase function inplanta

A chemical-genetic approach to elucidate protein kinase function inplanta The major objective in protein kinase research is the identification of the biological process, in which an individual enzyme is integrated. Protein kinase-mediated signalling is thereby often addressed by single knock-out mutation- or co-suppression-based reverse genetics approaches. If a protein kinase of interest is a member of a multi gene family, however, no obvious phenotypic alteration in the morphology or in biochemical parameters may become evident because mutant phenotypes may be compensated by functional redundancy or homeostasis. Here we establish a chemical-genetic screen combining ATP-analogue sensitive (as) kinase variants and molecular fingerprinting techniques to study members of the plant calcium-dependent protein kinase (CDPK) family in vivo. CDPKs have been implicated in fast signalling responses upon external abiotic and biotic stress stimuli. CDPKs carrying the as-mutation did not show altered phosphorylation kinetics with ATP as substrate, but were able to use ATP analogues as phosphate donors or as kinase inhibitors. For functional characterization in planta, we have substituted an Arabidopsis thaliana mutant line of AtCPK1 with the respective as-variant under the native CPK1 promoter. Seedlings of Arabidopsis wild type and AtCPK1 as-lines were treated with the ATP analogue inhibitor 1-NA-PP1 and exposed to cold stress conditions. Rapid cold-induced changes in the phosphoproteome were analysed by 2D-gel-electrophoresis and phosphoprotein staining. The comparison between wild type and AtCPK1 as-plants before and after inhibitor treatment revealed differential CPK1-dependent and cold-stress-induced phosphoprotein signals. In this study, we established the chemical-genetic approach as a tool, which allows the investigation of plant-specific classes of protein kinases in planta and which facilitates the identification of rapid changes of molecular biomarkers in kinase-mediated signalling networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A chemical-genetic approach to elucidate protein kinase function inplanta

Loading next page...
 
/lp/springer_journal/a-chemical-genetic-approach-to-elucidate-protein-kinase-function-Ck4VtVtbMc
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9245-9
Publisher site
See Article on Publisher Site

Abstract

The major objective in protein kinase research is the identification of the biological process, in which an individual enzyme is integrated. Protein kinase-mediated signalling is thereby often addressed by single knock-out mutation- or co-suppression-based reverse genetics approaches. If a protein kinase of interest is a member of a multi gene family, however, no obvious phenotypic alteration in the morphology or in biochemical parameters may become evident because mutant phenotypes may be compensated by functional redundancy or homeostasis. Here we establish a chemical-genetic screen combining ATP-analogue sensitive (as) kinase variants and molecular fingerprinting techniques to study members of the plant calcium-dependent protein kinase (CDPK) family in vivo. CDPKs have been implicated in fast signalling responses upon external abiotic and biotic stress stimuli. CDPKs carrying the as-mutation did not show altered phosphorylation kinetics with ATP as substrate, but were able to use ATP analogues as phosphate donors or as kinase inhibitors. For functional characterization in planta, we have substituted an Arabidopsis thaliana mutant line of AtCPK1 with the respective as-variant under the native CPK1 promoter. Seedlings of Arabidopsis wild type and AtCPK1 as-lines were treated with the ATP analogue inhibitor 1-NA-PP1 and exposed to cold stress conditions. Rapid cold-induced changes in the phosphoproteome were analysed by 2D-gel-electrophoresis and phosphoprotein staining. The comparison between wild type and AtCPK1 as-plants before and after inhibitor treatment revealed differential CPK1-dependent and cold-stress-induced phosphoprotein signals. In this study, we established the chemical-genetic approach as a tool, which allows the investigation of plant-specific classes of protein kinases in planta and which facilitates the identification of rapid changes of molecular biomarkers in kinase-mediated signalling networks.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off