A Characterization of Global Entanglement

A Characterization of Global Entanglement We define a set of 2 n−1−1 entanglement monotones for n qubits and give a single measure of entanglement in terms of these. This measure is zero except on globally entangled (fully inseparable) states. This measure is compared to the Meyer–Wallach measure for two, three, and four qubits. We determine the four-qubit state, symmetric under exchange of qubit labels, which maximizes this measure. It is also shown how the elementary monotones may be computed as a function of observable quantities. We compute the magnitude of our measure for the ground state of the four-qubit superconducting experimental system investigated in [M. Grajcar et al., Phys. Rev. Lett. 96, 047006 (2006)], and thus confirm the presence of global entanglement in the ground state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Loading next page...
 
/lp/springer_journal/a-characterization-of-global-entanglement-ebvlZsmPjj
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Physics; Characterization and Evaluation of Materials; Computer Science, general ; Engineering, general; Mathematics, general; Physics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-007-0052-7
Publisher site
See Article on Publisher Site

Abstract

We define a set of 2 n−1−1 entanglement monotones for n qubits and give a single measure of entanglement in terms of these. This measure is zero except on globally entangled (fully inseparable) states. This measure is compared to the Meyer–Wallach measure for two, three, and four qubits. We determine the four-qubit state, symmetric under exchange of qubit labels, which maximizes this measure. It is also shown how the elementary monotones may be computed as a function of observable quantities. We compute the magnitude of our measure for the ground state of the four-qubit superconducting experimental system investigated in [M. Grajcar et al., Phys. Rev. Lett. 96, 047006 (2006)], and thus confirm the presence of global entanglement in the ground state.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off